

Process Oriented Diagnostics in Candidate ACME Atmosphere Configurations

Rich Neale+, Wuyin Lin*, Cecile Hannay+, Po-Lun Ma*, Phil Rasch* +National Center for Atmospheric Research, *BNL, *PNNL

Objectives

Overview

- Current (and future) options for the atmospheric physics configurations need to be examined for fidelity in order to determine the best model configuration
- Existing climate-type simulations do not give a compact assessment of the different role of physics parameterizations (CAPT-type simulations improve on this somewhat)
- New compact diagnostics are needed to distinguish scheme performance in different climate regimes at a high enough frequency to probe the mechanisms underlying the schemes
- Diagnostics package will be included into the ACME UVcdat tier 1b package
 Methodology
- Process-oriented diagnostics are applied to high frequency daily output from simulations using the Cloud Layers Unified by Binormals (CLUBB) and Unified Convection (UNICON) scheme, as well as a default v0.2 (CAM5) configuration.
- Vertical profiles of states and tendency quantities are determined as functions of precipitation, surface temperature and mid-tropospheric vertical velocity
- The response are examined as functions of domain (tropics; 10N-10S, central US), land and ocean, and vertical resolution for 1-year, 1 deg AMIP simulations

Results

Overview

- **Tropics:** Evolution of relative humidity (RH) first in PBL then through whole column with increasing precipitation (PRECT)
- Weaker relationship to OMEGA500 and TS
- UNICON more humid in upper troposphere; CLUBB smoother
- Total physics tendencies: Temperature, UNICON more elevated, but smoother in lower troposphere
- Deep convection temp. tendencies lower with rainfall reevaporation in CLUBB. w/o re-evaporation more similar to v0.2
- Land: more rapid moistening, with strong moistening near surface
- Ocean: macrophysical cooling differences at low precip. rates
- Central US: Moistening increases more coherently in the vertical
- L72: Elevated moistenining and deep convection heating profile weakening but with increased elevation

rneale@ucar.edu

