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SCIENCE DRIVER DEMONSTRATION OF METHODS

Motivation - Uncertainties in future terrestrial sources of atmospheric carbon dioxide from » High Disturbance = led to 42% and 50% AGB decrease in ZELIG-TROP and CLM (Fig. 3b).
changes to forest disturbance and tree mortality rates, specifically in tropical forests. » Periodic Disturbance = led to 18% and 19% AGB decrease in ZELIG-TROP and CLM (Fig. 4c).

 CLM matched the gap model, and capturing disturbance-recovery processes.

(1) There has been evidence that climate change and forest disturbance are linked, such that a » CLM does not capture intra-annual variation in coarse litter production; losses exceeded the gains.
changing climate can influence the timing, duration, and intensity of disturbance regimes (Dale » CLMA4.5 still over predicts tropical forest biomass.

et al. 2001) (Fig. 1) - Different processes caused reduced AGB between the models and empirical datasets. Driver of AGB

Fig. 1. Remotely sensed e naeon reduction in empirical datasets: wood density; ZELIG-TROP: stand basal area; CLM 4.5: leaf area
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(a) No significant effect on ANPP, (b) 42% and 50% decrease in AGB in ZELIG-TROP and CLM, (c) no significant effect on growth rates
Turnover (Phillips et al. 2004) ) ‘ in CLM, (d) a slightly significant decrease in coarse litter production in ZELIG, and increase in CLM, (e) significant decrease in basal
% ' area in ZELIG-TROP, but not observed in field data, and (f) significant decrease in LAI in CLM, but not observed in field data.
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DESIGN OF METHODS

* This project aims to evaluate the mortality and disturbance processes in two land surface
models of varying scales, detail, and functionality (Community Land Model: CLM, and ; Y
ZELIG-TROP) . Fig. 5. CLM-CN model evaluation and comparisons to ZELIG-TROP for a

: : : : : : . . iodic disturbance treatment: (a) ANPP, (b) st th, (c) ab d
This task will b.eneﬁt the I.ntegrated Earth System Model iESM) prOJec.t, \.’VhICh com.blnes Empirical ZELIG-TROP gf;’:l‘l’agz (;SGlg),il:ile (gfio?::e litiler pmductioi i‘;’tegg’,ogl me;s ;‘re‘:l"ief‘l'\‘;‘;“(: _—
CLM/CESM with a fully integrated human system component, and assist in developing

mitigation strategies in response to energy market shifts due to natural disturbances. SCIENCE IMPACT
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Design — * (Q1) Both models failed at capturing certain tropical forest processes associated with higher

* Individual-based, dynamic vegetation, forest gap model ZELIG-TROP (Holm et al. 2012) turnover and/or regional differences in species traits and processes has strong influence.
calibrated and verified for a complex Central Amazon forest; used as a ‘“‘benchmark’ model. » Getting the right answer (loss in biomass) for the wrong reason (Fig. 4).

Community Land Model (CLM) 4.5 CN, a global land surface model that is part of the « Empirical data found decrease in wood density is the driver of AGB loss.

T it o — * Accounting for wood density (proxy for functional traits) needs to be included in models.
Two elevated disturbance treatments: Earth e, Zoi

3) - w
. . . _ . ystem | . - 1E . . . . . .
“High disturbance’ = continual, annual 100 % Model @ ¢ i SRR * (Q2) This suggests that 1) the models are not accurately simulating all forest characteristics in

increase in mortality (~1% to 2%) — L response to increased disturbances, and 2) the variability between regions cannot be entirely
* “Periodic disturbance” = 20% removal of 2) Land _ 4) IAnSt: egsl;?;iﬂt explained by the disturbance regime, but rather potentially sensitive to intrinsic environmental

_stems, every >0 years : Surface | gL Model factors and/or community composition.
* Validation dataset for elevated disturbance = Model == g

Western and Southern Amazon ) Field . . .
- RAINFOR inventory network L Measurements Improving Disturbance in ESMs —

Wh - 1 densitv there 1) Dynamic  =——"7- s * Need for demographic vegetation model in CLM (CLM-ED)
en accounting for wood censity there is a Vegetation | ‘rpop, * Absolute value of AGB still high in CLM-CN 4.5 (for Central Amazon).
lower aboveground biomass in W&S Amazon Gap Model | .o 7 : : e e s :
| * Representation of regional variation in the Amazon Basin

compared to C&E Amazon (Baker et al. 2004) Need to link new updates to disturbance processes in fully coupled iIESM framework
Critical for future NGEE-Tropics observational and modeling work
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