A modular, open-source model for scientific and policy analyses of the global carbon cycle: Hector

Corinne A. Hartin

Ben Bond-Lamberty

Joint Global Change Research Institute

May 12, 2014
Integrated Climate Modeling Principal Investigator
Meeting

Motivation for Hector

- GCMs are detailed and powerful, but complex and slow
- Fast executing simple global climate models
 - Quick 'what-if' (e.g. policy) analyses
 - Model analyses requiring *many* runs (e.g. MCMC)
 - Coupling to other (e.g. IA) models
- ► E.g. MAGICC
 - Used across many scientific and policy communities
 - "Tried and true workhorse" (John Weyant this morning)
 - Many strengths
 - Old code to work with
 - Not open source, legal encumbrances unclear

Goals for Hector

- Reproduce first-order GCM responses
- Very fast executing
 - Adaptive-timestep solver
- Free and open source
 - Community model available to all
- Fairly easy to use
- Modular
 - Easy coupling to other models

Hector philosophy and structure

- Complexity only where warranted
- Components can be enabled/disabled via inputs
 - E.g. you can test two different ocean submodels against each other
- Modern, clean code software structure
 - E.g. coupler enforces unit checking between submodels
- R backend for summarizing and analyzing results
 - Ships with MAGICC, CMIP5, and observational data for comparison

Science: overview

Science: ocean

- 4 boxes
 - 2 surface boxes (100m)
 - Intermediate box
 - Deep box (~3777m)
- Advection and water mass exchange
- Heat uptake in surface boxes
- Carbon chemistry in surface boxes (e.g., atmosphereocean flux, pH, CaCO₃ saturations)

Results: atmospheric pCO₂

Results: global temperature change

LAND

Results: land carbon exchange - RCP 8.5

LAND

Results: ocean carbon exchange - RCP 8.5

LAND

Results: Low Latitude pH

Future directions

- Finalizing initial "0.1" release
 - Public Github repository coming soon
 - Several manuscripts to be submitted
- Link to GCAM
- Collaboration with PSU
 - Test alternative ocean
 - Better sea level rise
- Hopefully useful for certain classes of problems
 - Fast-executing emulation and policy/model exploration
- We welcome feedback and future use!

