
ACME’s testing process
Jeff Johnson, Jim Foucar
Software Engineering Team
ACME All-Hands Meeting
May 5, 2015

What do we mean by “testing?”
• A test either PASSes or FAILs

• Establishing criteria is challenging, but worthwhile
• Result is interpretable by non-experts

• A test should be easy for a non-expert to run
• All important features should be tested

• Only tested features can be changed reliably!
• It should be easy to run tests frequently

• Defects are localized in time
• It should be easy for someone to run subsets of tests

Why is testing important?
• Prevents bugs from creeping into the master branch
• Accelerates bug fixes

• Failing tests provide an “imprint” that gives developers
hints about the nature, whereabouts, and timeline of
defects

• Builds confidence needed to make transformational
software / algorithm / science changes

• Keeps “the model” in a good, reliable (and releasable)
state for doing science

3

Running tests Maintaining test
database

Continuous integration

ACME’s testing machinery

4

create_test
testlist.xml

update_acme_tests

cs.status.*

manage_xml_entries

Jenkins /
CDash

Running a test suite with
create_test

• Run within ACME/scripts directory
• Many options — not all needed all the time (run without

arguments to get help)

5

cd projects/ACME/scripts
mkdir $SCRATCH/acme-baseline
./create_test -xml_mach edison \
 -xml_compiler intel \

 -xml_category acme_developer \
 -testid acme_dev \
 -testroot $SCRATCH/acme_dev \
 -baselineroot $SCRATCH/acme-baseline \
 -project acme

Checking the status of a running test
suite with cs.status.* scripts
• “Test root” directory contains a cs.status.testid.machine

script

6

cd $SCRATCH/acme_dev
./cs.status.acme_dev.edison
…
PASS ERS.f19_g16_rx1.A.edison_intel
PASS ERS.f19_g16_rx1.A.edison_intel.memleak
PASS ERS.f19_g16_rx1.A.edison_intel.generate./scratch2/
scratchdirs/johnson/acme-baseline-testcases
FAIL ERS_IOP4c.f19_g16_rx1.A.edison_intel
BFAIL ERS_IOP4c.f19_g16_rx1.A.edison_intel.generate./scratch2/
scratchdirs/johnson/acme-baseline-testcases
RUN PEA_P1_M.f45_g37_rx1.A.edison_intel.G.acme_dev
PEND SMS.ne30_f19_g16_rx1.A.edison_intel
…

Interpreting test results

7

Code Meaning
PASS Test passed!
GEN Test was generated, not run yet
PEND Test is waiting in a queue
RUN Test is running
CHECK Manual review of data required
ERROR Checking of test result failed
EXPFAIL Expected test failure
FAIL Test failed (run failure or inexact restart)
BFAIL Baseline result could not be found to compare
TFAIL Test setup error
SFAIL Generation of test failed in scripts
CFAIL check_case script failed (env or build problem)

You can add your own tests to
existing ACME test suites
1. Edit script to rebuild acme_developer and

acme_integration test suites:
ACME/scripts/acme/update_acme_tests

2. Modify TEST_SUITES near top of file
3. Change to the directory containing the testing database:

cd ACME/scripts/ccsm_utils/Testlistxml
4. Execute the script, rebuilding the database:

../../acme/update_acme_tests suite ./testlist.xml

8

You can also add a test case to
another pre-existing test suite
1. Change to the directory containing the testing database:

cd ACME/scripts/ccsm_utils/Testlistxml

2. Extract the existing tests in the desired suite:
 ./manage_xml_entries -query -outputlist -machine machine
-compiler compiler -category suite > my_tests.txt
3. Edit the extracted tests in the file (my_tests.txt), adding

one line for each new test.
4. Add the tests in the file to those in the database:
 ./manage_xml_entries -addlist -file my_tests.txt
-category suite

5. Replace the database with the new database:
 mv testlist-date-time.xml testlist.xml

9

You should generate a baseline for a
new test running on a machine

10

cd projects/ACME/scripts
./create_test -testname new-test-case.machine.compiler \

 -testroot $SCRATCH/new-test-case \
 -generate new-test-baseline-name \
 -baselineroot acme-baseline-dir \
 -project account

ACME’s testing policy is built into our
procedure for code changes
1. Make your code changes in a feature branch
2. Run the acme_developer test suite on your branch and

check the results to make sure the tests pass
3. If necessary, add your own test case(s) to an existing or

new ACME test suite and run it to make sure these new
tests pass

4. Issue a pull request and assign an integrator, who
• integrates the branch into ‘next’
• waits for results of acme_integration test suite
• works with you to address issues
• integrates the branch into master

11

Nightly test results are available on CDash
(http://my.cdash.org/index.php?project=ACME_Climate)

12

http://my.cdash.org/index.php?project=ACME_Climate

Nightly test results are available on CDash
(http://my.cdash.org/index.php?project=ACME_Climate)

13

http://my.cdash.org/index.php?project=ACME_Climate

Nightly test results are available on CDash
(http://my.cdash.org/index.php?project=ACME_Climate)

14

http://my.cdash.org/index.php?project=ACME_Climate

Upcoming enhancements will make
testing easier
• Multiple, coexisting test databases (make your own!)
• Simplified tools for maintaining test databases
• A set of shorter-running test cases for some components

(better coverage)
• Better (more specific) diagnostic reporting for

troubleshooting test results

15

You can find more information on
ACME Confluence
• Documentation: https://acme-climate.atlassian.net/wiki/

display/Docs/Testing
• Support page: https://acme-climate.atlassian.net/wiki/

display/SE/Help%3A++Testing (monitored by SE team)
• Your feedback is appreciated!

16

https://acme-climate.atlassian.net/wiki/display/Docs/Testing
https://acme-climate.atlassian.net/wiki/display/SE/Help%3A++Testing

