

High-Dimensional Surrogate Model for UQ K. Sargsyan, C. Safta, H. Najm, B. Debusschere (SNL) D. Ricciuto, P. Thornton (ORNL)

Objective

Surrogate Modeling:

- · Build a surrogate model that approximates ACME output Qols
- · Explore a range of variability of parameters and operating conditions

Input Parameter Dependence:

· Account for correlated/dependent inputs

Strongly Nonlinear Input-Output Map:

· Capture failed-vegetation runs with classification

Output Uncertainty Attribution:

 Evaluate individual parameter contributions to output uncertainty

Curse of Dimensionality:

- Many parameters (50-100)
- · Expensive simulations (single run in a few hours)
- · Learn the model behavior with as few training simulations as possible

X Black Box v=u(x)

Approach

Rosenblatt Transformation:

- · Create dependent input configurations
- · High-D generalization of CDF transform
- · Probability-preserving map

Polynomial Chaos Surrogate:

- Cast input/outputs as random variables
- Flexible representation for both forward and inverse UQ $\Psi_k(x_1,x_2,...,x_d) = \psi_{k_1}(x_1)\psi_{k_2}(x_2)\cdots\psi_{k_d}(x_d)$

Bayesian Approach:

- · Uses any number of model simulations
- · Provides an uncertain surrogate with quantified error

Weighted Iterative Bayesian Compressive Sensing:

· Iterative search for most relevant polynomial bases

Variance-based Decomposition:

· Sobol sensitivities attribute output uncertainties to input parameters

$P(c_k|u(\mathbf{x}_j)) \propto P(u(\mathbf{x}_j)|c_k) P(c_k)$ Likelihood Prior

AmeriFlux site Niwot Ridge (#1)

CLM data

TLAI

TOTVEGC

Evergreen Forest at Campbell river (#2)

TLAI Surrogate

TLAI

TOTVEGC

Impact

Parameter Ranking:

· Provides an efficient parameter ranking by their impact to each output Qol.

Dimensionality Reduction:

· Large set of input parameters (50-100) can easily be reduced to about 10 without much loss of information

Model Surrogate for Computationally Intensive Studies:

· Calibration and optimization can proceed using the uncertain model surrogate

Key Parameters:

- · Leaf and fine root nitrogen
- · Fine root allocation
- · Leaf longevity, denitrification
- · Temperature sensitivity of autotrophic respiration

