

Salil Mahajan, Kate Evans, Marcia Branstetter

Objective

We evaluate the simulation of tele-connection of precipitation extremes to North Atlantic Oscillation (NAO) in Western Europe and North America

We compare Generalized Extreme Value (GEV) distribution parameters between simulations and observations.

We use a region-of-influence regionalization framework to improve sampling of extremes.

GEV metrics are part of Tier1b atmospheric diagnostics. The package submits a series of parallel jobs that generate a html page with plots.

Positive NAO Phase. Strong dipolar sea level pressure anomalies bring in moister, warmer air to Central Europe.

Approach

Data and Simulations:

NOAA Climate Prediction Center (CPC) Global Gauge-based Unified Daily Precipitation Data: Optimally Interpolated to half degree resolution.

ACME v0 ne120 (quarter degree) and ne30 (one degree) simulations: 4 member AMIP ensemble for the period 1979-2005

Generalized Extreme Value (GEV) Distribution:

Annual maximum of daily precipitation is assumed to follow a GEV distribution:

$$G(z) = \exp\left\{-\left[1 + \xi\left(\frac{z - \mu}{\sigma}\right)\right]^{-1/\xi}\right\}$$

where μ , σ and ξ represent the location, scale and shape parameter respectively.

$$\mu = \mu_0 + \alpha t$$

Impact of NAO is captured by a linear NAO index-dependent parameter in μ

The parameters are estimated by using the maximum likelihood method, which maximizes the probability of the occurrence of each of the annual maximum values in G(z)

Tier1b Atmospheric Diagnostics

Coupled Diagnostics:

000		users.nccs.	gov	C	
20160 and OBS o	428.A_WCYCL lata	.2000.ne30_0	EC.edison	n.alpha5_	_00
Priority	Metrics				
Time Serie	s Plots: Global and Zonal-b	and means			
Climatolog	gy Plots				
	GPCP	DJF JJA ANN			
PRECT	GPCP Precipitation rate	DJF JJA ANN			
PRECT	Precipitation rate	plot plot plot			
PRECT FLUT FSNTOA	Precipitation rate CERES-EBAF TOA upward LW flux TOA net SW flux	plot plot plot DJF JJA ANN plot plot plot plot plot plot			
PRECT FLUT FSNTOA LWCF	Precipitation rate CERES-EBAF TOA upward LW flux TOA net SW flux TOA longwave cloud forcing	plot plot plot DJF JJA ANN plot plot plot plot plot plot plot plot plot			
PRECT FLUT FSNTOA	Precipitation rate CERES-EBAF TOA upward LW flux TOA net SW flux TOA longwave cloud forcing TOA shortwave cloud forcing	plot plot plot DJF JJA ANN plot			
PRECT FLUT FSNTOA LWCF SWCF	Precipitation rate CERES-EBAF TOA upward LW flux TOA net SW flux TOA longwave cloud forcing	plot plot plot DJF JJA ANN plot plot plot plot plot plot plot plot plot			

Impact

Stationary Extremes:

NAO Teleconnections:

Precipitation (mm/day)

stronger winter extreme precipitation events in Northern Europe and milder extremes over Western Europe. High resolution model simulates NAO teleconnections better over Europe.

Summary:

High resolution model generates stronger extremes, stronger than CPC in many regions.

High resolution model seems to better capture impact of NAO on extremes

- -Due to stronger extremes?
- -Better response to NAO?

Similar techniques can be used to quantify the impacts of ENSO, AMO, PDO, etc. on extremes.

