

MOSART-sediment

Hong-Yi Li and L. Ruby Leung

Represent the overland and in-stream erosion, deposition and transportation of

Processes of suspended (fine-particle) sediment, in order to facilitate the related

transportation of C, N and P (primarily organic) in particulate form

Approach

Key assumptions (not changed in near future)

- ♦ Only two types of suspended sediment are included, mud and sand (grain size ~ 0.35mm)
- Mud supply comes from hillslope, bed and bank erosion, while sand supply only comes from bed and bank erosion
- ♦ Mud and sand supplies are constrained by water fluxes only
- Changes to topography and geomorephology are not considered

Major simplifications for the early results (future opportunities!)

- ♦ Hillslope soil erosion rate currently a function of runoff only, effects of soil properties and landuse not incoporated
- ♦ Effects of reservoir regulation and trapping mechanisms not included.
- ♦ Rectangular channel geometry (→ trapezoidal/circular channel geometry)

Evaluation data

- ♦ World River Sediment Yield Database by FAO (873 rivers)
- ♦ M&F05 database by James Syvitski et al (2007, 488 rivers)

Simulated global map mud sediment (2000-2004)

Simulated monthly sediment fluxes from top 10 large rivers

Impact

- MOSART-sediment lays the foundation for modeling transportation and transform of particulate C, N and P through rivers into the ocean to close the global C, N and P cycles
- **❖ Modeling and evaluating river BGC provide important constraints for simulating the soil C, N and P balance in ACME-CLM**
- ❖ Building on MOSART-sediment, groundwater-river interaction in the hyporheic zone can be represented to improve modeling of surface water-groundwater interactions

For additional information, contact:

Hong-Yi Li
Research Scientist

Pacific Northwest National Laboratory (509) 375-6914 Hongyi.li@pnnl.gov

