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Previously unconsidered intermediate and deep

coherent broad-scale halosteric (salinity-driven) Future assessments are underway to attribute the
changes in the world ocean in agreement with past cause of resolved halosteric sea-level patterns.

Long-term estimates of Southern Hemisphere
(SH) 0-700 dbar warming are likely
underestimated by up to 15-20% (~1-3 x 10242 J).

OHC changes appear consistent between
CMIP5 models and available observations

Further work will focus on important regions of

Future assessments of sea-level, energy budget eferen ces heat uptake to help quantify the relative role of
a.n d CI I m ate S e n S ItIVIty m u St b ette r CO n S I d e r th e Domingues, C.M. et al. (2008) Nature, 453, doi: 10.1038/nature07080 Gille, S.T. (2002) Science, 295, doi: 10.1126/science. 1065863 Ishii, M. & Kimoto, M. (2009) Journal of Oceanography, 65, doi: 10.1007/s10872-009-0027-7 Rhein, M. et al. (2013) Observations: Ocean. In Climate Change 2013: The Physical Science Basis d Iﬁe re nt m e C h an I S m S I n e aC h I a.ye r
Durack P.J. & Wijffels S.E. (2010) Journal of Climate, 23, doi: 10.1175/2010JCLI3377.1 Gille, S.T. (2008) Journal of Climate, 21, doi: 10.1175/2008JCLI2131.1 Levitus, S. et al. (2012) Geophysical Res. Lett., 39, doi: 10.1029/2012GL051106Lyman, J.M. & Smith, D.M. & Murphy J.M. (2007) Journal of Geophysical Research, doi: 10.1029/2005JC003172
2 I 1 - f h - S H d - - Durack, P.J. et al. (2012) Science, 336, doi: 10.1126/science. 1212222 Gleckler, P.J. et al. (2014) Upper, Intermediate and Abyssal Ocean warming estimates in CMIP5 ~ Johnson, G.C. (2008) Journal of Climate, 21, doi: 10.1175/2008JCLI2259.1
I m p I Catl O n S O t IS ap p are nt u n e reStI m a.tl O n Durack, P.J. et al. (2014a) Has Long-term Ocean Warming been Underestimated? Gouretski, V. & Koltermann, K.P. (2007) Geophysical Res. Lett., 34, doi: 10.1029/2006GL027834 Pierce, D.W. et al. (2012) Geophysical Res. Lett., 39, doi: 10.1029/2012GL053389
Durack, P.J. et al. (2014b) Long-term sea-level change revisited: The role of salinity Gregory, J.M. et al. (2004) Geophysical Res. Lett., 31, doi: 10.1029/2004GL020258 Purkey, S.G. & Johnson, G.C. (2008) Journal of Climate, 23, doi: 10.1175/2010JCLI3682.1

This work is supported by the Regional and Global Climate and Earth System Modeling programs for the Office of Science of the United States Department of Energy. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-CONF-653273 DOE 2014 Climate Modeling Pl Meeting, Washington D.C. May 2014 LUZ




