Tracking carbon dioxide
in the Southern Ocean
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Biogeochemical-Argo floats
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Simulated Biogeochemical-Argo floats in E3SM
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Simulated floats on the Southern Ocean
Regionally Refined Mesh
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So. Many. Applications.

Air-sea CO, flux from floats?




Under the ice: what are
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So. Many. Applications.

Air-sea CO, flux from floats?

particleColumnTotalPhytoChl, surface
float #50
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What is the ideal float profiling
frequency and timing?
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Under the ice: what are

So. Many. Applications. floats missing?
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Want to learn more?
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Abstract

The Southern Ocean plays a fundamental role in the global carbon cydle,
dominating the oceanic uptake of heat and carbon added by anthro
pogenic activities and modulating atmospheric carbon concentrations in
past, present, and fueure climaes. However, the remote
ditions found there make the Southern Ocean perpetually one of the
difficule places on the planct o observe and to model, resulting in signif-
icant and persistent uncerainties in our knowledge of the occanic carbon
cycle there. ‘The flow of carbon in the Southern Ocean is traditionally
understood using a zonal mean framework, in which the meridional over-

nd extreme con

st

turning circulation drives the latitudinal variability observed in both air-sea
flux and interior ocean carbon concentration. However, recent advances,
es in the re-

based largely on expanded observation and modeling capabili
gion, reveal the importance of processes acting at smaller scales, including
basin-scale zonal asymmetries in mixed-layer depth, soscale eddies, and
high-frequency atmospheric variability. Asscssing the current state of knowl-
edge and remaining gaps emphasizes the need to move beyond the zonal
mean picture and embrace a four-dimensional understanding of the carbon
cyele in the Southern Occan
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Carbon Outgassing in the Antarctic Circumpolar Current Is
Supported by Ekman Transport From the Sea Ice Zone in an
Observation-Based Seasonal Mixed-Layer Budget

Jade Sauvé' 7, Alison R. Gray' 7, Channing J. Prend'? (*, Seth M. Bushinsky? */, and
Stophen C. Riser!

Abstract Despite its importance for the global cycling of carboo, there are still large gaps in our
understanding of the processes driving annual and seasoaal carbon flaxes in the high-ltitude Southern Ocean.
This is doe in part 10 a historical paucity of observations in this remote, turbulent, and seasonally ice-covered
region. Her, we use autonomous biogeochemical float data spanning 6 ful seasonal cycles and with
circumpolar coverage of the Southern Ocean, complemened by atmospheric reanalysi, 10 construct a monthly
climatology of the mixed layer budget of dissotved inorganic carbon (DIC). We investigate the peocesses that
determine the annusal mean and seasonal cycle of DIC fuxes in 1wo different zones of the Southern Ocean—ihe
Sea lce Zone (SIZ) and Antarctic Southern Zone (ASZ). We find that, anmwualy, mixing with carbon- rich walers
at the base of the mixed layer supplies DIC which i, in the ASZ. either used for net biological production o
outgassed 1o the atmosphere. In contrast in the SIZ, where carbon outgassing and the biological pump e
weaker, the surplus of DIC is insiead the ASZ. In other words. gassing in the
southern Antarctic Circumpolas Current (ACC), which has been atributed 1o remineralized carbon from deep
water upwelied in the ACC. is also due 10 the wind-driven transport of DIC from the SIZ. These results stem
from the the circumpolar thus provide a weful
benchmark 10 evaluste climate maodels, which have significant biases n this region.

Plain Language SUMMAry The ocean surrounding the frazen continens of Antarctca pl
a0 important ol in the global cycling of carbon sndis important for the clnsat of our planet. Despy
. there are gaps in our knowedge due o the difficulies involved in collecting data from 3 remote,
e covered ocean. Inthis study, we use year round data collected by autonomous instruments that
can even measure under sea ice. We build  budget of crbon inthe surfuce lyer of the ocean, quantifying the
s and sinks of inacganc carban. We find h face layer through
imixing with carbonrich waters below. n the more stocmy, northern past o our study area.this carbo s then
cither consumed by photosythesis in the ocean o it i transferres o the atmosphere. I the southernmost
egion, biological acivity and gas transler o the ere interfuce s hindered by the presence of
sewice and the surplus of carbon is insead transferred north by wind-driven circulation. Our results show that
year-round measurements of carbon are necessary to understand carbon cycling i the region and we provide u
el product 1 compare o global simulations o the Essth systen.

different sou bon mostly enters the

1. Introduction

“The Southern Ocean plays a significant role inthe global carbon cycle. Around 0% of oceanic uptake of antheo-
pogenic carbon dioxide (CO,) occurs in the walers south of 35°S (DeVries, 2014). Ekman divergence driven
by strong wesierly winds leads 10 2 combination of upwelling and downwelling of natural and anthropogenic
carbon, respectively. Consequently, the Southern Ocean is a strong CO, sink between 35 and 55°S. although the
picture is not as clear at higher laitudes (Gruber et a., 2019). Historically, observations from this remote region
have been strongly biased towards summer and limited spatially, particularty in the seasonally ioe-covered areas.
Data from wwtonomous biogeochemical floats deployed by the Souther Ocean Carbon and Climate Observa
tions and Modkeling (SOCCOM) project showed a stronger wintertime outgassing of carbon dioxide at high
latitudes than expected. Jeading 10 3 low Southern Ocean annual mean carbon ptake (Bushinsky et al. 2019;
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