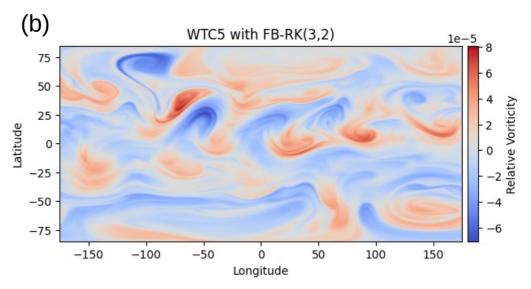
Time-Stepping Optimized for Ocean and Atmosphere Models

Objective

• Develop a new class of time-stepping methods optimized to take timesteps as large as possible on the shallow water equations (SWEs), which are foundational to ocean and atmosphere models.


Approach

- Alter an existing time-stepping scheme to use a weighted average of thickness data from both forward and backward in time (a forward-backward average) to advance the momentum equation.
- Optimize the weights of this forward-backward average to maximize the theoretical bound on the time-step when the scheme is applied to the SWEs.
- Test the scheme (FB-RK(3,2)) on both linear and nonlinear SW test cases and record the speedup as compared to a comparable, popular method often used in SW models (SSPRK3).

Impact

- The FB-RK(3,2) provides a speedup of 2.8 times (in terms of wall-clock time) on a linear test case, and speedups between 1.6 and 2.2 in fully nonlinear cases without effecting solution quality.
- The new scheme could be adapted to be a barotropic solver in a split barotropic/baroclinic ocean model to drastically reduce the cost of what is often the most expensive part of the model.

(a)	Maximum Ad	mittable Time-Steps	in Seconds
		Old Method	New Method
	Test Case	SSPRK3	FB-RK(3,2)
	Quasi-Linear	515	1445
	speedup		2.81
	Barotropic Jet	110	195
	$\mathbf{speedup}$		1.77
	Williamson TC 2	220	370
	speedup		1.68
	Williamson TC 4	110	240
	$\mathbf{speedup}$		2.18
	Williamson TC 5	145	310
	speedup		2.14

FB-RK(3,2) outperforms SSPRK3 in terms of time-step on multiple test cases (a) and retains solution quality (b), error compared to SSPRK3 is ~10e-8.

Jeremy R. Lilly, Darren Engwirda, Giacomo Capodaglio, Robert L. Higdon, and Mark R. Petersen. "CFL Optimized Forward-Backward Runge-Kutta Schemes for the Shallow-Water Equations". In: Monthly Weather Review 151.12 (Dec. 2023), pp. 3191–3208. issn: 1520-0493, 0027-0644. doi: 10.1175/MWR-D-23-0113.1.