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  large-­‐
scale	
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  of	
  basal	
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  with	
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  and	
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  of	
  these	
  uncertain;es	
  to	
  a	
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  quan;ty	
  of	
  interest	
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Approach	
  
•  Find	
  maximum	
  a	
  posteriori	
  (MAP)	
  
basal	
  sliding	
  coefficient	
  field	
  using	
  
adjoint	
  methods	
  

•  Make	
  Gaussian	
  approxima;on	
  of	
  
posterior	
  distribu;on	
  for	
  basal	
  sliding	
  
coefficient	
  by	
  combining	
  adjoint	
  and	
  
low-­‐rank	
  methods	
  

•  Predic;on	
  of	
  current	
  mass	
  loss	
  of	
  
Antarc;ca	
  based	
  on	
  Gaussian	
  
approxima;on	
  of	
  predic;on	
  quan;ty	
  	
  

Impact	
  
Large-­‐scale,	
  model-­‐based	
  inference	
  with	
  
quan;fied	
  uncertain;es,	
  and	
  corresponding	
  
predic;ons	
  is	
  feasible.	
  Results	
  suggest	
  that	
  weak	
  
coupling	
  between	
  ice	
  and	
  bedrock	
  extends	
  far	
  in	
  
the	
  interior	
  of	
  the	
  Antarc;c	
  ice	
  sheet.	
  	
  	
  	
  

Standard	
  devia;on	
  of	
  posterior	
  (right)	
  is	
  
significantly	
  reduced	
  compared	
  to	
  prior	
  (lec).	
  

Samples	
  from	
  the	
  Gaussian	
  approxima;on	
  to	
  the	
  posterior	
  distribu;on	
  
of	
  basal	
  sliding	
  coefficient	
  fields;	
  red	
  (blue)	
  areas	
  correspond	
  to	
  areas	
  

with	
  weak	
  (strong)	
  coupling	
  between	
  ice	
  sheet	
  and	
  bedrock	
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Figure 9: Samples from the prior (top row) and Gaussian approximation of the posterior (bottom row) distributions for the basal sliding
parameter field. The difference between the prior and posterior samples reflects the information gained from the observational data. The
large scale features of the posterior samples consistently resemble the posterior mean shown in Figure 7. Note the small variability in the
fast ice flow regions, while central and West Antarctica exhibit large variability in the inferred basal sliding parameter field.

propagating the covariance of the model parameters (which is given by the inverse of the Hessian evaluated at
�MAP, i.e.,H �1(�MAP)), through the linearized parameter-to-prediction map, i.e., by

�prediction :=F (�MAP)H �1(�MAP)F⇤(�MAP), (24)

where F (�MAP) is the Jacobian of the parameter-to-prediction map, evaluated at the MAP point �MAP, and the
Hessian at the MAP, H (�MAP), is defined by its action in a direction by (21), which involves solution of the
incremental forward (22) and incremental adjoint (23) Stokes problems.

One of the key ideas to enabling scalability of the prediction-under-uncertainty problem is that the Jacobian
of the parameter-to-prediction map F (�MAP) can be determined for each prediction quantity Q by computing the
gradient of Q with respect to the parameter field � . In our case, we are interested in using the steady state ice
flow model to predict the net ice mass flux into the ice shelves, and eventually into the ocean,

Q(�) :=
Z

�o

⇢u(�) · n ds, (25)

where �o is an outflow boundary of interest. The gradient of Q with respect to � evaluated at �MAP can then be
found as follows. First, solve the forward problem (1) with basal sliding parameter field given by �MAP. Then,
solve an adjoint problem defined for the quantity Q, i.e.,

r · v = 0 in ⌦ (26a)
�r ·�v = 0 in ⌦ (26b)
�vn = 0 on �t (26c)
�vn = �⇢n on �o (26d)

T�vn + exp(�MAP)T v = 0, v · n = 0 on �b (26e)
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std. dev. of �

Figure 8: This figure shows the standard deviations of the pointwise marginals of the prior distribution (left) and of (the Gaussian approxi-
mation of) the posterior distribution (right).

This uncertainty in the inference of the basal sliding parameter field, however, is merely an intermediate
quantity. What is of ultimate interest is predictions of output quantities of interest, with associated uncertainties,
using the ice sheet model with inferred parameters and their associated uncertainties, which have been computed
using the methods of this section. This is the subject of the next section.

5. Prediction with quantified uncertainty: forward propagation of basal sliding parameter uncertainty to

mass flux prediction

Once the inverse problem to infer the unknown basal sliding parameter field from observed surface velocities
has been solved, and the uncertainty in this inference quantified through a Gaussian approximation of the poste-
rior (made tractable by a low-rank representation of the prior-preconditioned data misfit Hessian), we are ready
to propagate the uncertain basal sliding parameter field through the ice flow model to yield a prediction of our
quantity of interest with associated uncertainty. Ultimately our interest is in predicting the ice mass flux to the
ocean several decades in the future, under various climate change scenarios. However, this requires a model of
the ice sheet as an evolving body, more mechanistic basal boundary conditions, and coupling to atmosphere and
ocean models. In the present work, we have instead chosen to illustrate our data-to-prediction framework with
a simpler quantity of interest Q given by the ice mass flux to the ocean using the steady state ice sheet model em-
ployed in the previous sections. Below, we describe scalable algorithms for this final step of our data-to-prediction
framework.

Formally, this amounts to solving a system of stochastic PDEs given by the nonlinear Stokes forward model with
the uncertain basal sliding parameter described by a Gaussian random field. While the low rank approximation
of Section 4.2 has resulted in significant dimensionality reduction (from O(106) to O(103), as seen in Figure 5),
the effective dimension, ⇠4000, is still large in absolute terms. Given that this many modes in parameter space
are required to quantify the uncertainty in the basal sliding coefficient parameters, and given the expense of
solving the large-scale highly-nonlinear forward ice sheet flow problem, the use of Monte Carlo sampling methods
would be prohibitive, since millions of forward solves would likely be required to characterize the statistics of
the prediction quantity. Similarly, for the problem we target, the use of polynomial chaos methods would be
prohibitive due to the curse of dimensionality that afflicts such methods.

Instead, consistent with our Gaussian approximation of the Bayesian solution of the inverse problem, and
our desire to scale to very large parameter dimensions, here we linearize the parameter-to-prediction map at
the MAP point, resulting in a Gaussian approximation of the prediction pdf, N (QMAP, �prediction). The mean of this
prediction pdf, QMAP, is computed by solving the forward ice sheet flow model (1) using �MAP as the basal sliding
parameter, i.e., the MAP point solution of the inverse problem. The covariance operator, �prediction, is found by
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