

Modernizing River Representation in E3SM

Key Progress in the MOSART River Model

Presenter: Tian Zhou

Ruby Leung; Hong-Yi Li; Donghui Xu; Chang Liao; Matt Cooper; Zeli Tan; Gautam Bisht; Dongyu Feng

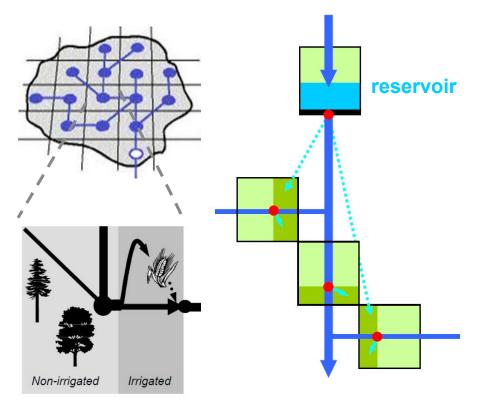
PNNL is operated by Battelle for the U.S. Department of Energy

Evolving River Modeling in ESMs

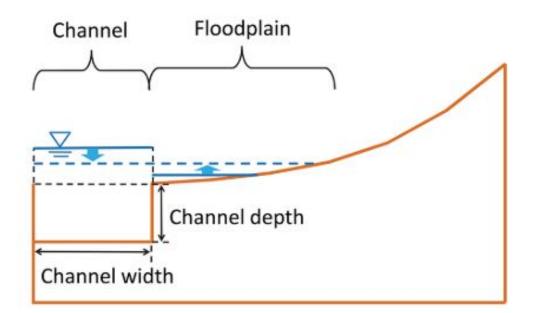
	Traditional river modeling	Land ice MALI ESSM Land ice MOSART
Processes	 Simplified natural processes 	Sea Ice MPAS-SI Human GCAM
Integration	 One-way runoff transport from land to ocean 	a Hustone
Resolution	 Relatively coarse spatial resolution (e.g. 0.5 deg or ~ 50 km) 	HINDORE COLUMN AND AND AND AND AND AND AND AND AND AN

tmosphe

Ocean MPAS-O


	Traditional river modeling	Modern river modeling (E3SM)
Processes	 Simplified natural processes 	 Human activities Additional key natural processes
Integration	 One-way runoff transport from land to ocean 	 Two-way interactions between components
Resolution	 Relatively coarse spatial resolution (e.g. 0.5 deg or ~ 50 km) 	 Finer spatial resolution (e.g. 5-10 km)

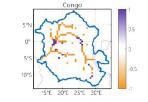
	Traditional river modeling	Modern river modeling (E3SM)
Processes	 Simplified natural processes 	 Human activities Additional key natural processes
Integration	 One-way runoff transport from land to ocean 	 Two-way interactions between components
Resolution	 Relatively coarse spatial resolution (e.g. 0.5 deg or ~ 50 km) 	 Finer spatial resolution (e.g. 5-10 km)

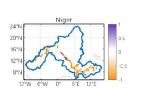


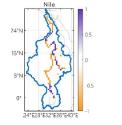
Human Activity

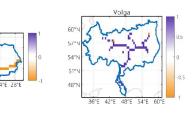
E3SM – MOSART Water supply and dam regulation schemes

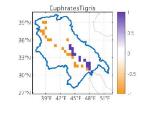
Key Natural Processes

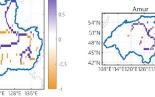

E3SM – MOSART Flood inundation scheme

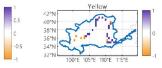

5

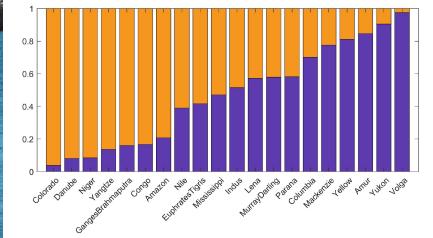


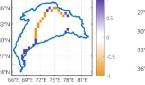

Impact of Water management on Flood Dynamics

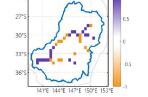

Water management does not alleviate future flood Water management alleviates future flood

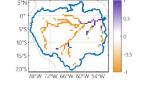


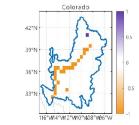


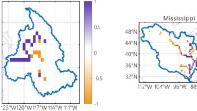


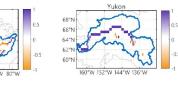


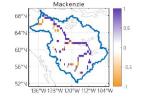


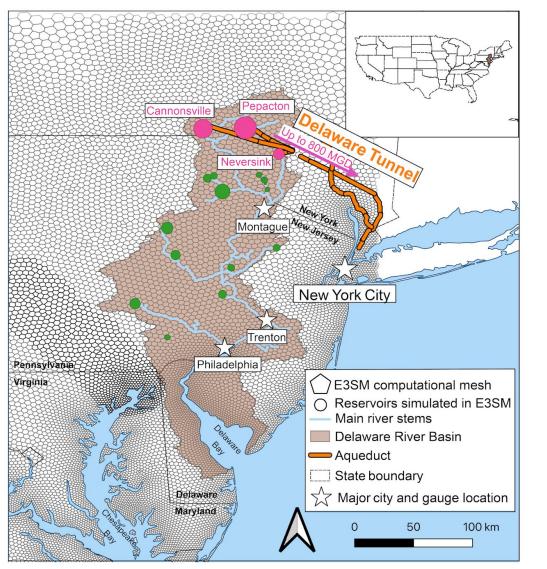


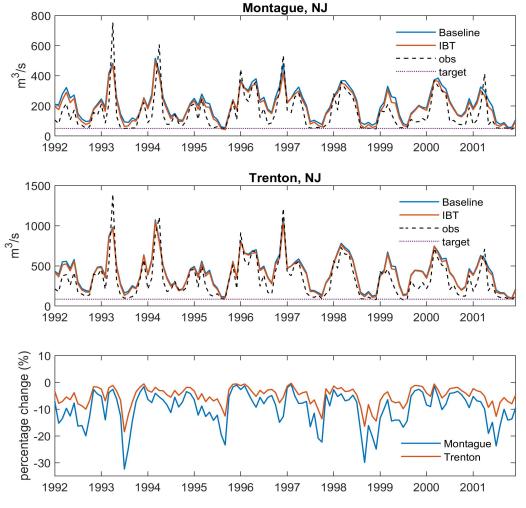


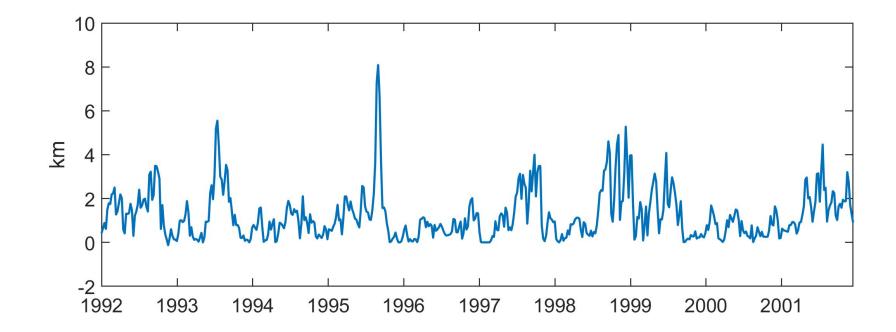

Columbia










Pacific Northwest Inter Basin Water Transfer (IBT) Alters Hydrology

Zhou et al. (in prep) 7

- IBT could push the maximum salt front location upstream by nearly 8 km
- The findings also highlight the critical need to incorporate IBT into models that assess human impacts on large-scale hydrologic processes

	Traditional river modeling	Modern river modeling (E3SM)
Processes	 Simplified natural processes 	 Human activities Additional key natural processes
Integration	 One-way runoff transport from land to ocean 	 Two-way interactions between components
Resolution	 Relatively coarse spatial resolution (e.g. 0.5 deg or ~ 50 km) 	 Finer spatial resolution (e.g. 5-10 km)

New Processes

- E3SM V1-V3 (coupled simulation)
 - MOSART (natural river process) (<u>Li et. al. 2013</u>)
- E3SM V2/V3 (features integrated into E3SM for BGC simulation campaign)
 - MOSART-WM (water management) (<u>Voisin et al. 2013</u>)
 - MOSART-Inundation (two schemes) (<u>Luo et al. 2017</u>)
 - MOSART-ELM two-way irrigation coupling (<u>Zhou et al. 2020</u>)
- Other new features turned off in coupled mode
 - MOSART-Heat (water temperature) (<u>Li et al. 2015</u>)
 - MOSART-Sediment (sediment transport) (<u>Li et al. 2021</u>)
- Ecosystem projects supported MOSART (ongoing) features
 - Routing with unstructured (MPAS) mesh (ICoM) (<u>Liao et al. 2023</u>)
 - MOSART-ELM two-way inundation coupling (ICoM) (Xu et al. 2022)
 - Two-way coupling between river and ocean (ICoM) (Feng et al. 2022)
 - Inter-basin water transfer (ICoM) (Zhou et al. in prep)
 - MOSART-Urban (ICoM) (Li et al. in prep)
 - MOSART-WM-Hydropower (offline) module (IM3, 9505) (<u>Zhou et al. 2018</u>)
 - Reservoir thermal stratification module (IM3) (Yigzaw et al. 2019)
 - MOSART-ATS coupling in Arctic basins (InteRFACE) (Gao et al. in prep)
 - MOSART-GCAM coupling (E3SM) (*Zhou et al.*)

Contributors:

- Ruby Leung
- Hong-Yi Li
- Nathalie Voisin
- Tian Zhou
- Xiangyu Luo
- Teklu Tesfa
- Zeli Tan
- Chang Liao
- Gautam Bisht
- Wondi Yigzaw
- Guoyong Leng
- Donghui Xu
- Dongyu Feng

	Traditional river modeling	Modern river modeling (E3SM)
Processes	 Simplified natural processes 	 Human activities Additional key natural processes
Integration	 One-way runoff transport from land to ocean 	Two-way interactions between components
Resolution	 Relatively coarse spatial resolution (e.g. 0.5 deg or ~ 50 km) 	 Finer spatial resolution (e.g. 5-10 km)

New Integration Schemes

- E3SM V1-V3 (coupled simulation)
 - MOSART (natural river process) (<u>Li et. al. 2013</u>)
- E3SM V2/V3 (features integrated into E3SM for BGC simulation campaign)
 - MOSART-WM (water management) (Voisin et al. 2013)
 - MOSART-Inundation (two schemes) (Luo et al. 2017)
 - MOSART-ELM two-way irrigation coupling (<u>Zhou et al. 2020</u>)
- · Other new features turned off in coupled mode
 - MOSART-Heat (water temperature) (<u>Li et al. 2015</u>)
 - MOSART-Sediment (sediment transport) (Li et al. 2021)
- Ecosystem projects supported MOSART (ongoing) features
 - Routing with unstructured (MPAS) mesh (ICoM) (Liao et al. 2023)
 - MOSART-ELM two-way inundation coupling (ICoM) (Xu et al. 2022)
 - Two-way coupling between river and ocean (ICoM) (*Feng et al. 2022*)
 - Inter-basin water transfer (ICoM) (Zhou et al. in prep)
 - MOSART-Urban (ICoM) (Li et al. in prep)
 - MOSART-WM-Hydropower (offline) module (IM3, 9505) (<u>Zhou et al. 2018</u>)
 - Reservoir thermal stratification module (IM3) (Yigzaw et al. 2019)
 - MOSART-ATS coupling in Arctic basins (InteRFACE) (Gao et al. in prep)
 - MOSART-GCAM coupling (E3SM) (Zhou et al.)

Contributors:

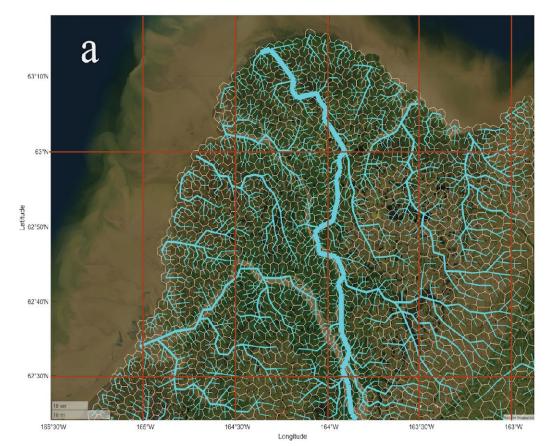
- Ruby Leung
- Hong-Yi Li
- Nathalie Voisin
- Tian Zhou
- Xiangyu Luo
- Teklu Tesfa
- Zeli Tan
- Chang Liao
- Gautam Bisht
- Wondi Yigzaw
- Guoyong Leng
- Donghui Xu
- Dongyu Feng

	Traditional river modeling	Modern river modeling (E3SM)
Processes	 Simplified natural processes 	 Human activities Additional key natural processes
Integration	 One-way runoff transport from land to ocean 	 Two-way interactions between components
Resolution	 Relatively coarse spatial resolution (e.g. 0.5 deg or ~ 50 km) 	 Finer spatial resolution (e.g. 5-10 km)

- E3SM V1-V3 (coupled simulation)
 - MOSART (natural river process) (<u>Li et. al. 2013</u>)
- E3SM V2/V3 (features integrated into E3SM for BGC simulation campaign)
 - MOSART-WM (water management) (<u>Voisin et al. 2013</u>)
 - MOSART-Inundation (two schemes) (<u>Luo et al. 2017</u>)
 - MOSART-ELM two-way irrigation coupling (<u>Zhou et al. 2020</u>)
- · Other new features turned off in coupled mode
 - MOSART-Heat (water temperature) (Li et al. 2015)
 - MOSART-Sediment (sediment transport) (Li et al. 2021)
- Ecosystem projects supported MOSART (ongoing) features
 - Routing with unstructured (MPAS) mesh (ICoM) (<u>Liao et al. 2023</u>)
 - MOSART-ELM two-way inundation coupling (ICoM) (Xu et al. 2022)
 - Two-way coupling between river and ocean (ICoM) (Feng et al. 2022)
 - Inter-basin water transfer (ICoM) (Zhou et al. in prep)
 - MOSART-Urban (ICoM) (Li et al. in prep)
 - MOSART-WM-Hydropower (offline) module (IM3, 9505) (<u>Zhou et al. 2018</u>)
 - Reservoir thermal stratification module (IM3) (Yigzaw et al. 2019)
 - MOSART-ATS coupling in Arctic basins (InteRFACE) (Gao et al. in prep)
 - MOSART-GCAM coupling (E3SM) (Zhou et al.)

Contributors:

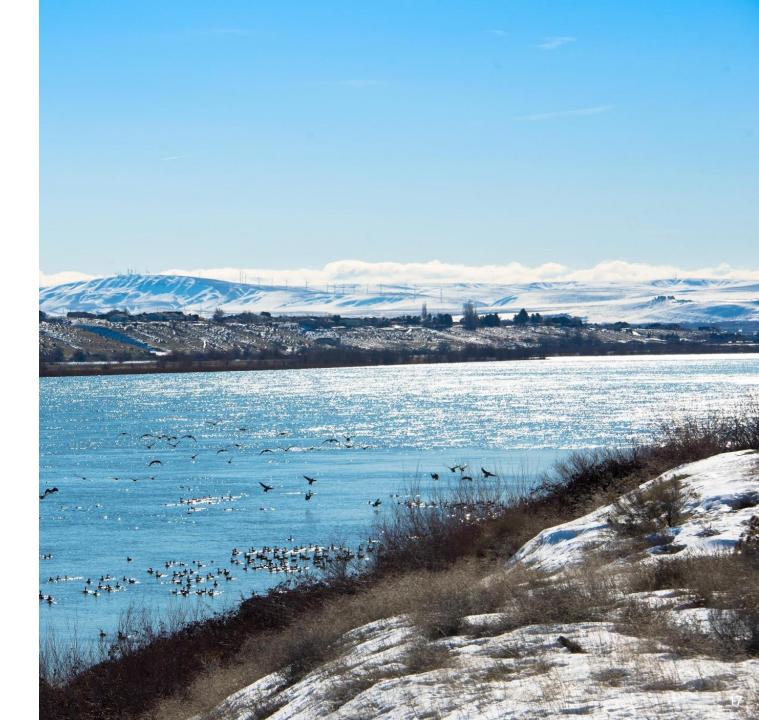
- Ruby Leung
- Hong-Yi Li
- Nathalie Voisin
- Tian Zhou
- Xiangyu Luo
- Teklu Tesfa
- Zeli Tan
- Chang Liao
- Gautam Bisht
- Wondi Yigzaw
- Guoyong Leng
- Donghui Xu
- Dongyu Feng



+ +

Evolving River Modeling in ESMs

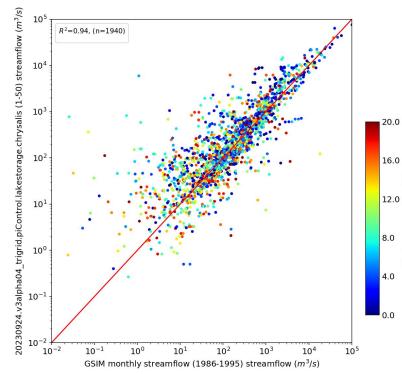
	Traditional river	Modern river modeling	Challenges and
	modeling	(E3SM)	Opportunities
Processes	 Simplified natural processes 	 Human activities Additional key natural processes 	 Enhance representation of human activities Identify missing processes
Integration	 One-way runoff transport from land to ocean 	 Two-way interactions between components 	Improve integration to enable more complex interactions and feedbacks
Resolution	 Relatively coarse	 Finer spatial	 Maintain model fidelity
	spatial resolution (e.g.	resolution (e.g. 5-10	while increasing model
	0.5 deg or ~ 50 km)	km)	resolution

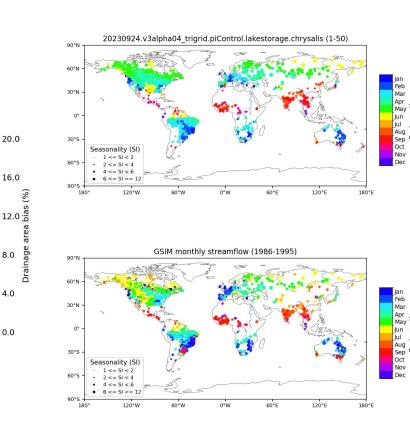

Yukon River delta on 5km MPAS grid with current single outlet config

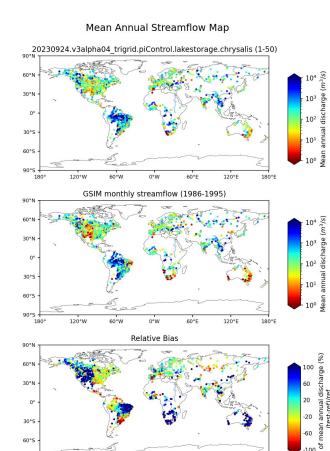
b 63°10'N 1 62°50'N 62°40'N 62°30'N 165°30'V 164°30W Longitude

Proposed channel bifurcation feature to better capture flow network in this region

Thank you

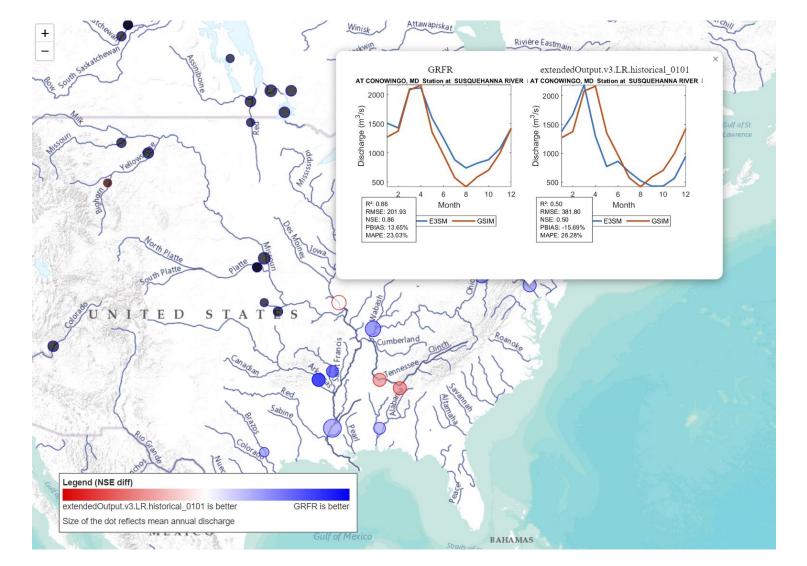

Evolving River Modeling in ESMs


	Traditional river modeling	Modern river modeling (E3SM)	Challenges and Opportunities
Processes	 Simplified natural processes 	 Human activities Additional key natural processes 	 Enhance representation of human activities Identify missing processes
Integration	 One-way runoff transport from land to ocean 	 Two-way interactions between components 	Improve integration to enable more complex interactions and feedbacks
Resolution	 Relatively coarse spatial resolution (e.g. 0.5 deg or ~ 50 km) 	 Finer spatial resolution (e.g. 5-10 km) 	 Maintain model fidelity while increasing model resolution
			Obtain high quality dataStreamline diagnostics



Seasonality Map

Mean Annual Streamflow Scatter Plot


120°E

60°E

180°E

9000

Improving River Model Diagnostics

Pacific

Northwest

Interactive maps allow user to investigate and compare simulation results at gauge level