

Georgia Tech College of Sciences School of Earth and Atmospheric Sciences

Modulation of Regional Carbon Uptake by AMOC and Alkalinity Changes in the Subpolar North Atlantic under a Warming Climate

Qi Zhang, Takamitsu Ito, Annalisa Bracco

Georgia Tech Ocean Science & Engineering

08/06/2024

Impact of AMOC Slowdown

The AMOC is a crucial component of Earth's climate system and its alteration has significant implications for temperature, salinity, and the **carbon cycle**. Column inventory of anthropogenic carbon (mol m^{-2})

(credit: IPCC AR4 WGI, 2007)

Impact of AMOC Slowdown

The AMOC is a crucial component of Earth's climate system and its alteration has significant implications for temperature, salinity, and the **carbon cycle**. Investigating Mechanisms Behind Reduced CO₂ Uptake

AMOC contributes to the vertical transport of DIC from the surface to interior ocean, which modulates the air-sea difference in partial pressure of CO_2 (pCO_2).

(Goris et al., 2018)

b) C_{ant^*} -uptake (2090s) vs. mid- and high-lat. - δpCO_2^{sea} (1990s)

Impact of AMOC Slowdown

The AMOC is a crucial component of Earth's climate system and its alteration has significant implications for temperature, salinity, and the **carbon cycle**. Investigating Mechanisms Behind Reduced CO₂ Uptake

AMOC contributes to the vertical transport of DIC from the surface to interior ocean, which modulates the air-sea difference in partial pressure of CO_2 (pCO_2).

Role of Alkalinity and Other Factors

The trends of pCO_2 are driven by SST, SSS, alkalinity, and DIC. The amount of CO_2 uptake reduction contributed by surface alkalinity and diminished subduction remains uncertain.

Impact of AMOC Slowdown

The AMOC is a crucial component of Earth's climate system and its alteration has significant implications for temperature, salinity, and the **carbon cycle**. Investigating Mechanisms Behind Reduced CO₂ Uptake

AMOC contributes to the vertical transport of DIC from the surface to interior ocean, which modulates the air-sea difference in partial pressure of CO_2 (pCO_2).

Role of Alkalinity and Other Factors

The trends of pCO_2 are driven by SST, SSS, alkalinity, and DIC. The amount of CO_2 uptake reduction contributed by these variables remains uncertain.

Two plausible mechanisms linking the AMOC slowdown to the decline of regional CO₂ uptake: diminished subduction and <u>reduction in surface alkalinity</u>

Methods

Data - CMIP6

- 1. CESM2
- 2. NorESM2-LM
- 3. ACCESS-ESM1-5
- 4. MPI-ESM1-2-LR
- 5. CMCC-ESM2
- 6. CNRM-ESM2-1
- 7. UKESM1-0-LL
- 8. MIROC-ES2L
- 9. CanESM5

10. IPSL-CM6A-LR

lat: 40°N to 65°N lon: 55°W to 15°W

Geographic Area

Anomalies of AMOC, Salinity and Alkalinity

Anomalies of AMOC, Salinity and Alkalinity

Anomalies of AMOC, Salinity and Alkalinity

CO₂ uptake and pCO₂ fgCO₂ vs ALK fgCO₂ vs AMOC (C) yr^{-2} **(E)** $\times 10^{-4}$ Carbon uptake (PgC, 2070-2100) 0 - $fgCO_2$ trends Difference (kg m^{-2} 14 $R^2 = 0.23$ $R^2 = 0.43$ -2 12 $^{-4}$ 10 .

8

6

4

-100

-120

-80

-60

Alk Difference (umol ka-1)

-40

-20

-6

-8

-14

-12

-10

-8

AMOC Difference (Sv)

-6

-4

Regression Line

ACCESS-ESM1-5

IPSL-CM6A-LR

MPI-ESM1-2-LR

MIROC-ES2L UKESM1-0-LL

CMCC-ESM2

CNRM-ESM2-1

.

.

•

NorESM2-LM CanESM5

CESM2

CO₂ uptake and pCO₂

CO₂ uptake and pCO₂

pCO₂ decomposition

(Sarmiento and Gruber, 2006)

$$\delta pCO_{2} = \frac{\partial pCO_{2}}{\partial SST} \delta SST + \frac{\partial pCO_{2}}{\partial SSS} \delta SSS + \frac{\partial pCO_{2}}{\partial DIC} \delta DIC + \frac{\partial pCO_{2}}{\partial ALK} \delta ALK$$

pCO₂ decomposition

(Sarmiento and Gruber, 2006)

Georgia

Tech

pCO₂ decomposition

Georgia

Take home messages

Models with stronger AMOC slowdown generally exhibit weaker surface warming and larger decline of surface salinity and alkalinity.

Take home messages

Models with stronger AMOC slowdown generally exhibit weaker surface warming and larger decline of surface salinity and alkalinity.

Alkalinity is the most important driver of regional pCO_2 change by 2100.

Take home messages

Models with stronger AMOC slowdown generally exhibit weaker surface warming and larger decline of surface salinity and alkalinity.

Alkalinity is the most important driver of regional pCO_2 change by 2100.

AMOC slowdown and surface alkalinity reduction, primarily due to dilution effects, impacts the ocean's capacity to absorb CO₂ and drives the future decrease in regional carbon uptake.

Wednesday Poster Session Poster #34

Thanks and Welcome Questions!

doi: 10.3389/fmars.2024.1304193

qzhang459@gatech.edu

Acknowledgments

We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF. We acknowledge the support by the U.S. Department of Energy, through grant DE-SC0021300.

