

Physical, Accurate, and Efficient Atmosphere and Surface Coupling Across Scales (PAESCAL)

Hui Wan, Lead Pl Pacific Northwest National Laboratory, <u>Hui.Wan@pnnl.gov</u>

BER-funded team members:

Michael A. Brunke, Kezhen Chong, Brian J. Gaudet, Brian M. Griffin, Vincent E. Larson, Xiaoliang Song, Jianfeng Li, Wuyin Lin, Taufiq Hassan Mozumder, Hui Wan, Heng Xiao, Guang Zhang, Tao Zhang, Xubin Zeng

ASCR-funded team members:

Ann S. Almgren, Justin Dong, Berk Geveci, Sean P. Santos, Steven Roberts, Panos Stinis, Christopher J. Vogl, Carol S. Woodward, Abhishek Yenpure

Project scope: improving numerical process coupling in the E3SM **Atmosphere Model (EAM)**

"After the mathematical representations of the individual physical processes have been developed, what numerical algorithms should be used to assemble those pieces into a coherent and performant model?"

- Primary focus is **time integration**
- Some tasks involve vertical discretization and model formulation

Why this is important: examples from EAMv1

A small change in cloud process coupling led to significant decreases of cloud radiative forcing in the subtropical marine stratocumulus regions

Strong and unphysical sensitivities in dust life cycle to vertical resolution were attributable to process ordering

Wan et al. (2024)

Dust dry removal, source region average (Tg/yr)

PAESCAL addresses process coupling issues at three levels of E3SM's model hierarchy

Earth system level

Atmosphere driver level

Parameterization level

a mus contract and

Key challenges

- MANY processes and a lot of codes that are continuously evolving
- Bridging physical understanding and mathematical rigor

Our goal

Move away from overly simplified plug-and-play

Design something sophisticated and elegant

Addressing coupling issues at the atmosphere driver level

- Performing **process-level analysis** in EAM to understand the intended physics and identify numerical problems
- Developing **idealized ("toy") models** to cleanly test hypothesis
- Using a general and intuitive error analysis framework to guide the design of new coupling options

Wan et al. (2024)

Addressing coupling challenges at the parameterization level

New cloud microphysics code **SPAECIES**

- Written in C++ and interfaced with ASCR's SUNDIALS time integrator suite
- Designed to be a library (\rightarrow extension beyond clouds)
- Properly convergent(!)
- Work-precision diagrams helps to evaluate different coupling options to balance accuracy and cost

Reference values for rain mass mixing ratio q_r : min: 4.1e-5 kg/kg, mean: 5.6e-5 kg/kg, max 8.9e-5 kg/kg

Sean Santos, lead developer of SPAECIES

Work-precision diagram for a 4-process warm rain problem

Other examples of ongoing work (and team members at this meeting)

Addressing vertical resolution challenges

Ann Almgren, Thu breakout 2

PAESCAL is all about interactions

The coupling theme: interactions between processes and between developers

The **BER-ASCR** collaboration: an example of companion papers

Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 1: Dust budget analyses and the impacts of a revised coupling scheme

Hui Wan¹, Kai Zhang¹, Christopher J, Vogl², Carol S, Woodward², Richard C, Easter¹, Philip J, Rasch³, Yan Feng⁴, and Hailong Wang¹

¹Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA ²Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California, USA ³Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA ⁴Environmental Science Division, Argonne National Laboratory, Lemont, Illinois, USA

Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 2: A semi-discrete error analysis framework for assessing coupling schemes

Christopher J. Vogl¹, Hui Wan², Carol S. Woodward¹, and Quan M. Bui^{1,a}

¹Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California, USA ²Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA ^anow at: Blue River Technology, Sunnyvale, California, USA

We contribute to the ESM community by getting numerical errors out of the way of physics/science-focused research. Collaboration is the key to our path forward.