Xarray Climate Data Analysis Tools
A Python Package for Simple and Robust Analysis of Climate Data

2024 EESM PI Meeting (08/08/2024)

Tom Vo, Stephen Po-Chedley, Jason Boutte, Jiwoo Lee, and Jill Zhang
With thanks to Peter Gleckler, Paul Durack, Karl Taylor, and Chris Golaz

This work is performed under the auspices of the U. S. DOE by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344.
LLNL-PRES-867521

g, U.S. DEPARTMENT OF

Thank you to our project funders at

BER (Office of Biological Environmental Research)
EESSD (Earth and Environmental Systems Sciences Division)

PM: Renu Joseph PM: Xujing Davis
RGMA ESMD

Regional & Global Earth System Model
Model Analysis Development

/\ '
s (@0 (951

Energy Exascale
Earth System Model

Office of

EN ERGY Science

An Overview of this X @DAT Talk

Driving forces

Principle goals

Key features

How to started and get involved
What'’s in store for xCDAT?

The Driving Forces Behind xCDAT

Growing volume of climate data
A larger pool of data products
Increasing spatiotemporal resolution of model and observational data

Data analysis requires highly performant, core operations |
Reading and writing netCDF files B
Regridding I
Spatial and temporal averaging netCDF

CDAT (Community Data Analysis Tools) library is end-of-life since Dec/2023
Provided climate data analysis and visualization packages for over 20 years
Many users and software packages (e.g., E3SM Diagnostics, PCMDI Metrics) depend on

CDAT @DAT

Community Data Analysis Tools

XCDAT addresses these challenges by....

Combining the power of Xarray with geospatial analysis features inspired by CDAT

DAT = gy xarray + &

Community Data Analysis Tools

X €DAT Xarray Climate Data Analysis Tools

XCDAT is an extension of Xarray in the climate science domain

Scope focused on routine climate data analysis operations on structured grids
Leverages and/or extends the capabilities other powerful Xarray-based
packages such as xESMF, xgcm, and CF-xarray

ESMFEF XGCM | ’Canrray

Developed by team of climate scientists and software englneers from
Lawrence Livermore National Laboratory

C}SM @I

P g f Climate Mo dI
Energy Exascale and Intercompari

Earth System Model

What are the principle goals of xCDAT?

Use modern technologies (Xarray, Dask)
Capable of handling large datasets
Lazy operations, parallelism
Similar core capabilities to CDAT
e.g., spatial averaging, temporal averaging, regridding
Promote software sustainability and reproducible science
Maintainable, extensible, and easy-to-use
Emphasize Climate and Forecast (CF) Metadata Conventions
Foster open-source community
Serve the needs of the climate community in the long-term
Community engagement efforts (e.g., Pangeo, ESGF)

-“ Xarlray :N-D labeled arrays and datasets in Python

Why is Xarray the core technology of Key features of Xarray
XCDAT? _
File I/O — netCDF, Iris, OPeNDAP, Zarr,
Modern, mature, and widely more
adopted Array manipulation — Indexing,
Stable — funding from NumFocus selecting, interpolating, grouping,
Introduces labels for dimensions, aggregating, parallelism via Dask,
coordinates, and attributes on top of plotting
raw NumPy_“ke arrays Interoperable with scientific Python
User experience is intuitive, concise, ecosystgfl'
1

less error-prone (compared to raw N=l I.:l pandas
NumPYy) NumPy

NUMF@CUS

OPEN CODE = BETTER SCIENCE matpf .tlib 7/ DASK

X ‘3’3 DAT tools for simple and robust analysis code

height = 2.0 [m], time = 1850-01-01

/O and Metadata

=

. : . i
Xarray dataset 1/0O with post-processing options 5
Generate missing bounds, center time coords, convert i

lon axis orientation

50 100 150 200 250 300 350
Longitude [degrees_east]

height = 2.0 [m]

Robust handling of coordinate bounds
Interpret Climate and Forecast (CF) compliant metadata

- |-

T
tme

(via cf-xarray)

Computations

Spatial averaging
Temporal averaging, climatologies, departures

Horizontal regridding (extension of xESMF and Python port

of Regrid2)
Vertical regridding (extension of xgcm)

Parallelizable through Xarray’s support for [gDASK

How to use xCDAT

XCDAT extends Xarray Dataset objects via “accessor” classes.
dataset.spatial.

object accessor method

Accessors classes include: Functions include:

open_dataset, open_mfdataset
center_times, decode_time
swap_lon_axis

create_axis

create_grid

get_dim_coords
get_dim_keys

e spatial — .average, .get_weights

e temporal — .average, .group_average,
.climatology, .departures

e regridding — horizontal, vertical

e bounds — .get_bounds, .add_bounds,
.add_missing_bounds

Visit the API Reference page for a complete list: hitps://xcdat.readthedocs.io/en/latest/api.html

https://xcdat.readthedocs.io/en/latest/api.html

xCDAT simplifies Xarray code for specific operations

import numpy as np
import xarray as Xxr

dpath = (
"/p/user_pub/work/CMIP6/CMIP/E3SM-Project/"

"E3SM-2-0/historical/r1ilpifi/Amon/ts/gr/v20220830,/"

)

ds = xr.open_mfdataset(dpath + "*.nc")

ts_monthly = ds.ts.groupby("time.month")
ts_monthly_clim = ts_monthly.mean(dim="time")
ts_anom = ts_monthly - ts_monthly_clim

coslat = np.cos(np.deg2rad(ds.lat))
ts_anom_weighted = ts_anom.weighted(coslat)

ts_anom_global = ts_anom_weighted.mean(dim="1at").mean(dim=""1lon")

month_len = ts_anom_global.time.dt.days_in_month
month_len_by_year = month_len.groupby("time.year")
wgts = month_len_by_year / month_len_by_year.sum()

temp_sum = (ts_anom_global » wgts).resample(time="AS").sum({dim="time")
denominator_sum = (wgts).resample(time="AS").sum(dim="time")

ts_anom_global_ann = temp_sum / denominator_sum

e Lesscode
Example: calculate global-mean, weighted monthly anomalies e More flexible

import xcdat as xc

dpath = (
"/pfuser_pub/work,/CMIP6/CMIP/E3SM-Project/"
"E3SM-2-0/historical/r1ilpif1/Amon/ts/gr/v20220830/"
)
ds = xc.open_mfdataset(dpath)

ds_anom = ds.temporal.departures("ts", freg="month")

ds_anom_global = ds_anom.spatial.average("ts")

ds_anom_global_ann = ds_anom_global.temporal.group_average("ts

freq="year")

xCDAT’s Growing Adoption in the Scientific Community

16,000+ total downloads* on Anaconda

100+ stars* on GitHub

Global usage in various projects and organizations .
LLNL (Lawrence Livermore National Lab)
NASA (National Aeronautics and Space Administration)
IPSL (Institut Pierre-Simon Laplace)

Data processing engine for PCMDI Metrics Package and E3SM Diagnostics

Package

Post-processing and analysis tool in E3SM Unified Environment

, E3SM
(@PvD! (E3SM o=,

Dlagnosis and Int rrrrrrrrrrr e -
Earth System Model %ON DA

* As of Aug 2024

https://anaconda.org/conda-forge/xcdat
https://github.com/XCDAT/xcdat

Get Involved in xCDAT!

XCDAT is distributed via Anaconda

S ¢

ANACONDA CONDA-FORGE

Any and all contribution is welcome!

Code

Documentation
Submit and/or address tickets
Forum discussions

[=]tm

Read the Docs

[m] 2 [m]

"

[=],3:

GitHub

What's in store for xCDAT?

Collaborate with UXarray for interoperation to support end-to-end
and more streamlined operation on unstructured (i.e. E3SM native
output) datasets.

Continue assisting integration in DOE funded projects including
PCMDI Metrics Package, E3SM Diags

Explore other DOE funded projects to integrate XCDAT for
analysis capabilities

Recap

XCDAT is an extension of Xarray for climate data analysis on structured
grids, a modern successor to the Community Data Analysis Tools (CDAT)
library

Focused on routine climate research analysis operations, such as
temporal averaging, spatial averaging, and regridding.

Designed to promote software sustainability and reproducible science
Parallelizable through Xarrav’'s sunnort for Dask

x@EDAT

Supplemental
Slides

The Software Design Philosophy of X(& DAT

e Encourage software sustainability and reproducible science

e Well-documented and configurable features allow scientists to rapidly
develop robust, reusable, less-error prone, more maintainable code

e Contribute to Pangeo’s effort of fostering an ecosystem of mutually
compatible geoscience Python packages

Read the Docs e

PANG=O

Code Example: Calculate Geospatial Weighted Average

Xarray

import xarray as xr

import numpy as np

path = "input/tas_3hr_ACCESS-ESM1-
5_historical_r10ilplfl_gn_201001010300-201501010000.nc"
= xr.open_dataset(path)

ds["tas"] = ds["tas"] - 273.15

weights = np.cos(np.deg2rad(ds["tas"].lat))
weights.name "weights"

tas_weighted ds["tas"].weighted(weights)

weighted_mean = tas_weighted.mean(("lon", "lat"))

XCDAT

import

path = "input/tas_3hr_ACCESS-ESM1-
5_historical_r10ilplfl_gn_201001010300-201501010000.nc"
ds = xc.open_dataset(path)

ds["tas"] = ds["tas"] - 273.15

weighted_mean = ds.spatial.average("tas", axis=["X",

"Y"], keep_weights=True)["tas"]

Note: xcdat does a lot more, including handling
regional averages

Code Example: Calculate Monthly Temperature Departures
Xarray xXCDAT

import import

path = "ts_Amon_ACCESS1-0_historical_r1ilpl_185001-200512.nc" path = "ts_Amon_ACCESS1-0_historical_r1ilpl_185001-200512.nc"

.open_dataset(path) .open_dataset(path)

month_len = ds.time.dt.days_in_month
weights = (
month_len.groupby("time.month") / ts_anomalies = ds.temporal.departures("ts", freg="month",
month_len.groupby("time.month").sum() weighted=True)["ts"]
)

ts_climo = (ds["ts"] =*

weights).groupby("time.month").sum(dim="time")

ts_anomalies = ds["ts"].groupby("time.month") - ts_climo

Parallelism with ?&‘ xarray J7/ DASK +

e Why does Xarray integrate with Dask?
For datasets that don’t fit into memory, support parallel computations and streaming computation

Dask is an optional feature, but might become a required dependency
— https://docs.xarray.dev/en/stable/use

e Which Xarray features support Dask?
Nearly all existing xarray methods have been extended to work automatically with Dask arrays
Indexing, computation, concatenating and grouped operations

— https://docs.xarray.dev/en/stable/user-guide/dask.html#using-dask-with-xarray

e What is the default Dask behavior for distributing work on compute hardware?
By default, dask uses its multi-threaded scheduler distributes work across multiple cores and allows for processing
some datasets that do not fit into memory

Optionally, setup the distributed scheduler for running across a cluster
— https://docs.xarray.dev/en/stable/user-guide/dask.html#using-dask-with-xarray

e How do xCDAT APIs work with Dask?
Many core XCDAT APIs inherit Xarray's Dask support by operating on xarray.Dataset objects and making calls to
parallelized Xarray APIs.
XCDAT users just need chunk the xarray.Dataset object before calling any of the parallelizable xXCDAT APIs.

https://docs.xarray.dev/en/stable/use
https://docs.xarray.dev/en/stable/use
https://docs.xarray.dev/en/stable/user-guide/dask.html#using-dask-with-xarray
https://docs.xarray.dev/en/stable/user-guide/dask.html#using-dask-with-xarray
https://docs.xarray.dev/en/stable/user-guide/dask.html#using-dask-with-xarray
https://docs.xarray.dev/en/stable/user-guide/dask.html#using-dask-with-xarray

XCDAT 1s parallelizable through Xarray and Dask

Spatial Average Runtime Comparison

Most Xarray methods = =
XCDAT Seria
extended to work 10007 mmm xCDAT Parallel
automatically with Dask 800 { 7 773
arrays i
£ 600 -

e.g., indexing, computation, E

concatenating and grouped - 400 4

operations
XCDAT inherits Xarray’s support 2001
for parallelism o

7 12 22 50 105

Filesize [GB]

d a S k XCDAT outperforms the older CDAT library by
much large margins in some cases, such as global

spatial averaging

How do I activate Dask with Xarray/xCDAT?

Load the data from a netCDF file or files with import xarray as Xr
open_dataset() or open_mfdataset()
Specify the chunks argument filepath =

a. DISCLAIMER: open_mfdataset() will chunk
each netCDF file into a single Dask array by
default, so it is important set the chunks
argument if the dataset is large

Note, Xarray maintains a Dask array until it is not
possible. It will raise an exception instead of
implicitly loading the array into memory.

ds = xr.open_mfdataset(
||1®||)

tas_daily = ds.tas.groupby(

http://esgf.nci.org.au/thredds/dodsC/master/CMIP6/CMIP/CSIRO/ACCESS-ESM1-5/historical/r10i1p1f1/Amon/tas/gn/v20200605/tas_Amon_ACCESS-ESM1-5_historical_r10i1p1f1_gn_185001-201412.nc
http://esgf.nci.org.au/thredds/dodsC/master/CMIP6/CMIP/CSIRO/ACCESS-ESM1-5/historical/r10i1p1f1/Amon/tas/gn/v20200605/tas_Amon_ACCESS-ESM1-5_historical_r10i1p1f1_gn_185001-201412.nc
http://esgf.nci.org.au/thredds/dodsC/master/CMIP6/CMIP/CSIRO/ACCESS-ESM1-5/historical/r10i1p1f1/Amon/tas/gn/v20200605/tas_Amon_ACCESS-ESM1-5_historical_r10i1p1f1_gn_185001-201412.nc
http://esgf.nci.org.au/thredds/dodsC/master/CMIP6/CMIP/CSIRO/ACCESS-ESM1-5/historical/r10i1p1f1/Amon/tas/gn/v20200605/tas_Amon_ACCESS-ESM1-5_historical_r10i1p1f1_gn_185001-201412.nc
http://esgf.nci.org.au/thredds/dodsC/master/CMIP6/CMIP/CSIRO/ACCESS-ESM1-5/historical/r10i1p1f1/Amon/tas/gn/v20200605/tas_Amon_ACCESS-ESM1-5_historical_r10i1p1f1_gn_185001-201412.nc

	Slide 1: Xarray Climate Data Analysis Tools A Python Package for Simple and Robust Analysis of Climate Data 2024 EESM PI Meeting (08/08/2024)
	Slide 2: Thank you to our project funders at
	Slide 3: An Overview of this Talk
	Slide 4: The Driving Forces Behind xCDAT
	Slide 5: xCDAT addresses these challenges by….
	Slide 6
	Slide 7: What are the principle goals of xCDAT?
	Slide 8
	Slide 9
	Slide 10: How to use xCDAT
	Slide 11
	Slide 12: xCDAT’s Growing Adoption in the Scientific Community
	Slide 13: Get Involved in xCDAT!
	Slide 14: What’s in store for xCDAT?
	Slide 15: Recap
	Slide 16: Supplemental Slides
	Slide 17: The Software Design Philosophy of
	Slide 18: Code Example: Calculate Geospatial Weighted Average
	Slide 19: Code Example: Calculate Monthly Temperature Departures
	Slide 20: Parallelism with +
	Slide 21: xCDAT is parallelizable through Xarray and Dask
	Slide 22: How do I activate Dask with Xarray/xCDAT?

