
Xarray Climate Data Analysis Tools
A Python Package for Simple and Robust Analysis of Climate Data
2024 EESM PI Meeting (08/08/2024)

Tom Vo, Stephen Po-Chedley, Jason Boutte, Jiwoo Lee, and Jill Zhang

With thanks to Peter Gleckler, Paul Durack, Karl Taylor, and Chris Golaz

This work is performed under the auspices of the U. S. DOE by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344.

LLNL-PRES-867521

Thank you to our project funders at

BER (Office of Biological Environmental Research)

EESSD (Earth and Environmental Systems Sciences Division)

PM: Renu Joseph PM: Xujing Davis

An Overview of this Talk

1. Driving forces

2. Principle goals

3. Key features

4. How to started and get involved

5. What’s in store for xCDAT?

The Driving Forces Behind xCDAT

1. Growing volume of climate data
a. A larger pool of data products

b. Increasing spatiotemporal resolution of model and observational data

2. Data analysis requires highly performant, core operations
a. Reading and writing netCDF files

b. Regridding

c. Spatial and temporal averaging

3. CDAT (Community Data Analysis Tools) library is end-of-life since Dec/2023
a. Provided climate data analysis and visualization packages for over 20 years

b. Many users and software packages (e.g., E3SM Diagnostics, PCMDI Metrics) depend on

CDAT

Combining the power of Xarray with geospatial analysis features inspired by CDAT

= +

xCDAT addresses these challenges by….

● xCDAT is an extension of Xarray in the climate science domain

● Scope focused on routine climate data analysis operations on structured grids

● Leverages and/or extends the capabilities other powerful Xarray-based

packages such as xESMF, xgcm, and CF-xarray

● Developed by team of climate scientists and software engineers from

Lawrence Livermore National Laboratory

: Xarray Climate Data Analysis Tools

What are the principle goals of xCDAT?

● Use modern technologies (Xarray, Dask)
○ Capable of handling large datasets

○ Lazy operations, parallelism

● Similar core capabilities to CDAT
○ e.g., spatial averaging, temporal averaging, regridding

● Promote software sustainability and reproducible science
○ Maintainable, extensible, and easy-to-use

○ Emphasize Climate and Forecast (CF) Metadata Conventions

● Foster open-source community
○ Serve the needs of the climate community in the long-term

○ Community engagement efforts (e.g., Pangeo, ESGF)

Key features of Xarray

● File I/O – netCDF, Iris, OPeNDAP, Zarr,

more

● Array manipulation – Indexing,

selecting, interpolating, grouping,

aggregating, parallelism via Dask,

plotting

● Interoperable with scientific Python

ecosystem

Why is Xarray the core technology of

xCDAT?

● Modern, mature, and widely

adopted

● Stable – funding from NumFocus

● Introduces labels for dimensions,

coordinates, and attributes on top of

raw NumPy-like arrays

● User experience is intuitive, concise,

less error-prone (compared to raw

NumPy)

8

: N-D labeled arrays and datasets in Python

I/O and Metadata

● Xarray dataset I/O with post-processing options
○ Generate missing bounds, center time coords, convert

lon axis orientation

● Robust handling of coordinate bounds

● Interpret Climate and Forecast (CF) compliant metadata

(via cf-xarray)

Computations

● Spatial averaging

● Temporal averaging, climatologies, departures

● Horizontal regridding (extension of xESMF and Python port

of Regrid2)

● Vertical regridding (extension of xgcm)

tools for simple and robust analysis code

Parallelizable through Xarray’s support for

How to use xCDAT

xCDAT extends Xarray Dataset objects via “accessor” classes.

Accessors classes include:

● spatial – .average, .get_weights

● temporal – .average, .group_average,
.climatology, .departures

● regridding – horizontal, vertical

● bounds – .get_bounds, .add_bounds,
.add_missing_bounds

Functions include:

● open_dataset, open_mfdataset
● center_times, decode_time
● swap_lon_axis
● create_axis
● create_grid
● get_dim_coords
● get_dim_keys

Visit the API Reference page for a complete list: https://xcdat.readthedocs.io/en/latest/api.html

https://xcdat.readthedocs.io/en/latest/api.html

xCDAT simplifies Xarray code for specific operations

Example: calculate global-mean, weighted monthly anomalies
● Less code

● More flexible

● Easier to read/write

xCDAT’s Growing Adoption in the Scientific Community

● 16,000+ total downloads* on Anaconda

● 100+ stars* on GitHub

● Global usage in various projects and organizations

○ LLNL (Lawrence Livermore National Lab)

○ NASA (National Aeronautics and Space Administration)

○ IPSL (Institut Pierre-Simon Laplace)

● Data processing engine for PCMDI Metrics Package and E3SM Diagnostics

Package

● Post-processing and analysis tool in E3SM Unified Environment

* As of Aug 2024

https://anaconda.org/conda-forge/xcdat
https://github.com/XCDAT/xcdat

Get Involved in xCDAT!

xCDAT is distributed via Anaconda

Any and all contribution is welcome!

● Code

● Documentation

● Submit and/or address tickets

● Forum discussions

What’s in store for xCDAT?

● Collaborate with UXarray for interoperation to support end-to-end

and more streamlined operation on unstructured (i.e. E3SM native

output) datasets.

● Continue assisting integration in DOE funded projects including

PCMDI Metrics Package, E3SM Diags

● Explore other DOE funded projects to integrate xCDAT for

analysis capabilities

Recap

● xCDAT is an extension of Xarray for climate data analysis on structured

grids, a modern successor to the Community Data Analysis Tools (CDAT)

library

● Focused on routine climate research analysis operations, such as

temporal averaging, spatial averaging, and regridding.

● Designed to promote software sustainability and reproducible science

● Parallelizable through Xarray’s support for Dask

Supplemental
Slides

The Software Design Philosophy of

● Encourage software sustainability and reproducible science

● Well-documented and configurable features allow scientists to rapidly

develop robust, reusable, less-error prone, more maintainable code

● Contribute to Pangeo’s effort of fostering an ecosystem of mutually

compatible geoscience Python packages

Code Example: Calculate Geospatial Weighted Average

import xcdat as xc

1. Open the dataset

path = "input/tas_3hr_ACCESS-ESM1-

5_historical_r10i1p1f1_gn_201001010300-201501010000.nc"

ds = xc.open_dataset(path)

2. Convert air temperature to Celsius

ds["tas"] = ds["tas"] - 273.15

3. Calculate the weighted mean

weighted_mean = ds.spatial.average("tas", axis=["X",

"Y"], keep_weights=True)["tas"]

import xarray as xr

import numpy as np

1. Open the dataset

path = "input/tas_3hr_ACCESS-ESM1-

5_historical_r10i1p1f1_gn_201001010300-201501010000.nc"

ds = xr.open_dataset(path)

2. Convert air temperature to Celsius

ds["tas"] = ds["tas"] - 273.15

3. Calculate weights and apply to data

weights = np.cos(np.deg2rad(ds["tas"].lat))

weights.name = "weights"

tas_weighted = ds["tas"].weighted(weights)

4. Calculate the weighted mean

weighted_mean = tas_weighted.mean(("lon", "lat"))

Xarray xCDAT

Note: xcdat does a lot more, including handling

regional averages

Code Example: Calculate Monthly Temperature Departures
Xarray xCDAT

import xcdat as xc

1. Open the dataset

path = "ts_Amon_ACCESS1-0_historical_r1i1p1_185001-200512.nc"

ds = xc.open_dataset(path)

2. Calculate the monthly anomalies

Note, we extract “ts” from the xr.Dataset object with

[“ts”]

ts_anomalies = ds.temporal.departures("ts", freq="month",

weighted=True)["ts"]

import xarray as xr

1. Open the dataset

path = "ts_Amon_ACCESS1-0_historical_r1i1p1_185001-200512.nc"

ds = xr.open_dataset(path)

2. Calculate the weights

month_len = ds.time.dt.days_in_month

weights = (

month_len.groupby("time.month") /

month_len.groupby("time.month").sum()

)

2. Calculate the monthly climatology

ts_climo = (ds["ts"] *

weights).groupby("time.month").sum(dim="time")

3. Calculate the monthly anomalies

ts_anomalies = ds["ts"].groupby("time.month") - ts_climo

Parallelism with +

● Why does Xarray integrate with Dask?

○ For datasets that don’t fit into memory, support parallel computations and streaming computation

○ Dask is an optional feature, but might become a required dependency

— https://docs.xarray.dev/en/stable/use

● Which Xarray features support Dask?

○ Nearly all existing xarray methods have been extended to work automatically with Dask arrays

○ Indexing, computation, concatenating and grouped operations

— https://docs.xarray.dev/en/stable/user-guide/dask.html#using-dask-with-xarray

● What is the default Dask behavior for distributing work on compute hardware?

○ By default, dask uses its multi-threaded scheduler distributes work across multiple cores and allows for processing

some datasets that do not fit into memory

○ Optionally, setup the distributed scheduler for running across a cluster

— https://docs.xarray.dev/en/stable/user-guide/dask.html#using-dask-with-xarray

● How do xCDAT APIs work with Dask?

○ Many core xCDAT APIs inherit Xarray's Dask support by operating on xarray.Dataset objects and making calls to

parallelized Xarray APIs.

○ xCDAT users just need chunk the xarray.Dataset object before calling any of the parallelizable xCDAT APIs.

https://docs.xarray.dev/en/stable/use
https://docs.xarray.dev/en/stable/use
https://docs.xarray.dev/en/stable/user-guide/dask.html#using-dask-with-xarray
https://docs.xarray.dev/en/stable/user-guide/dask.html#using-dask-with-xarray
https://docs.xarray.dev/en/stable/user-guide/dask.html#using-dask-with-xarray
https://docs.xarray.dev/en/stable/user-guide/dask.html#using-dask-with-xarray

xCDAT is parallelizable through Xarray and Dask

● Most Xarray methods

extended to work

automatically with Dask

arrays
○ e.g., indexing, computation,

concatenating and grouped

operations

● xCDAT inherits Xarray’s support

for parallelism

xCDAT outperforms the older CDAT library by
much large margins in some cases, such as global
spatial averaging

How do I activate Dask with Xarray/xCDAT?

1. Load the data from a netCDF file or files with

open_dataset() or open_mfdataset()

2. Specify the chunks argument

a. DISCLAIMER: open_mfdataset() will chunk

each netCDF file into a single Dask array by

default, so it is important set the chunks

argument if the dataset is large

Note, Xarray maintains a Dask array until it is not

possible. It will raise an exception instead of

implicitly loading the array into memory.

import xarray as xr

filepath =

"http://esgf.nci.org.au/thredds/dodsC/master/CMIP6/CMI

P/CSIRO/ACCESS-ESM1-

5/historical/r10i1p1f1/Amon/tas/gn/v20200605/tas_Amon_

ACCESS-ESM1-5_historical_r10i1p1f1_gn_185001-

201412.nc"

ds = xr.open_mfdataset(filepath, chunks={"time":

"10"})

tas_daily = ds.tas.groupby(ds.time.dt.day).mean()

http://esgf.nci.org.au/thredds/dodsC/master/CMIP6/CMIP/CSIRO/ACCESS-ESM1-5/historical/r10i1p1f1/Amon/tas/gn/v20200605/tas_Amon_ACCESS-ESM1-5_historical_r10i1p1f1_gn_185001-201412.nc
http://esgf.nci.org.au/thredds/dodsC/master/CMIP6/CMIP/CSIRO/ACCESS-ESM1-5/historical/r10i1p1f1/Amon/tas/gn/v20200605/tas_Amon_ACCESS-ESM1-5_historical_r10i1p1f1_gn_185001-201412.nc
http://esgf.nci.org.au/thredds/dodsC/master/CMIP6/CMIP/CSIRO/ACCESS-ESM1-5/historical/r10i1p1f1/Amon/tas/gn/v20200605/tas_Amon_ACCESS-ESM1-5_historical_r10i1p1f1_gn_185001-201412.nc
http://esgf.nci.org.au/thredds/dodsC/master/CMIP6/CMIP/CSIRO/ACCESS-ESM1-5/historical/r10i1p1f1/Amon/tas/gn/v20200605/tas_Amon_ACCESS-ESM1-5_historical_r10i1p1f1_gn_185001-201412.nc
http://esgf.nci.org.au/thredds/dodsC/master/CMIP6/CMIP/CSIRO/ACCESS-ESM1-5/historical/r10i1p1f1/Amon/tas/gn/v20200605/tas_Amon_ACCESS-ESM1-5_historical_r10i1p1f1_gn_185001-201412.nc

	Slide 1: Xarray Climate Data Analysis Tools A Python Package for Simple and Robust Analysis of Climate Data 2024 EESM PI Meeting (08/08/2024)
	Slide 2: Thank you to our project funders at
	Slide 3: An Overview of this Talk
	Slide 4: The Driving Forces Behind xCDAT
	Slide 5: xCDAT addresses these challenges by….
	Slide 6
	Slide 7: What are the principle goals of xCDAT?
	Slide 8
	Slide 9
	Slide 10: How to use xCDAT
	Slide 11
	Slide 12: xCDAT’s Growing Adoption in the Scientific Community
	Slide 13: Get Involved in xCDAT!
	Slide 14: What’s in store for xCDAT?
	Slide 15: Recap
	Slide 16: Supplemental Slides
	Slide 17: The Software Design Philosophy of
	Slide 18: Code Example: Calculate Geospatial Weighted Average
	Slide 19: Code Example: Calculate Monthly Temperature Departures
	Slide 20: Parallelism with +
	Slide 21: xCDAT is parallelizable through Xarray and Dask
	Slide 22: How do I activate Dask with Xarray/xCDAT?

