CA RRM (3 km) topography (m)

The regionally refined model of E3SM: overview and extremes applications

Qi Tang¹ (tang30@llnl.gov), Jean-Christophe Golaz¹, Luke Van Roekel², Ziming Ke¹, Jishi Zhang¹, Yang Chen³, James Randerson³, Peter Bogenschutz¹, Yunyan Zhang¹ and E3SM RRM team

> ¹LLNL, ²LANL, ³UCI EESM PI meeting, Washington D.C. August 6-9, 2024

Background

- Higer resolution simulation is a long-time goal of climate model development.
- Increasing interests in key regions and ensemble simulations
- RRM is a computationally efficient solution.
 - ~10-20% of uniform high-res model

Simulation	Configuration	Effective angular resolution	Number of elements	Speed (SYPD)	Number of nodes	Cost (core- hours per year)
Low-resolution model (LRM) High-resolution model (HRM) Regionally refined model (RRM)	Default Default HRM default	1° 0.25° 1 to 0.25° 1 to 0.25°	5400 86 400 9905	6 2 1.7	81 675 88	22 000 551 000 84 000 75 000

costs of EAMv1 atmosphere-only cases (Tang et al., 2019)

- We developed RRM in other components in E3SMv2.
 - Ocean eddy activity; Ice ice streams; Land surface types
 - All major components (atmosphere, land, ocean, sea ice) can do RRM.

• Use the EAMv1 HR parameters and only focus on the high-res CONUS domain.

- June-July-August precipitation
- RRM generally reproduces high-res precipitation patterns over the refined domain.

- A first-of-its-kind application of RRM in all major components, accomplished CMIP6 climate simulation campaign
- Key achievements
 - Improved climate at refined mesh without degrading the fidelity over low-res (LR) mesh
 - Novel hybrid timestep strategy in EAM
 - dt = high-res dycore + LR physics
 - Avoids recalibration beyond v2.LR
 - Large time-truncation errors at 25 km
 - Efficient throughput (12 SYPD on Chrysalis)

Atm, Land (25 -> 100 km)

Ocean, Sea ice (14 -> 60 km)

Global results

- Left: global NARRM climatology is the same as or slightly better than its low-resolution (LR) counterpart compared to observations and CMIP6 models.
- Right: NARRM and LR have similar climate sensitivities and feedbacks.

Precipitation

• NARRM simulates better precip (left) related to the finer topography.

Tang et al., 2023

• Reduces the biases in marine stratocumulus clouds off the California coast (right).

SWCF

Obs

LR

NARRM

SST bias (model – obs) with four configurations

Van Roekel et al., to be submitted

- Above: surface current speed shows significant eddy activity in RRM, including improved Irminger and Labrador currents
- Right: Sea ice concentration improved in Labrador sea

Opportunities

- RRM opportunities with E3SMv3 and SCREAM/EAMxx capabilities.
 - Advanced physics + non-hydrostatic dynamics

CARRM (3 km -> 100 km)

Courtesy of Hsiang-He Lee

- Creek fire (2020) simulation of hourly black carbon (BC, ug/kg)
- 2020/09/07 00z to 2020/09/10 23z

Pyrocumulonimbus is reasonably represented by E3SM-CARRM.

More in Ziming Ke's talk in Extremes at 2:45 PM Wednesday

Geosci. Model Dev., 17, 3687-3731, 2024 https://doi.org/10.5194/gmd-17-3687-2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

https://doi.org/10.5194/egusphere-2024-839 Preprint. Discussion started: 30 April 2024 (c) Author(s) 2024. CC BY 4.0 License.

Atmospheric River Induced Precipitation in California as Simulated by the Regionally Refined Simple Convective Resolving E3SM **Atmosphere Model (SCREAM) Version 0**

Peter A. Bogenschutz¹, Jishi Zhang¹, Qi Tang¹, and Philip Cameron-Smith¹ ¹Lawrence Livermore National Laboratory, Livermore, CA

Leveraging regional mesh refinement to simulate future climate projections for California using the Simplified **Convection-Permitting E3SM Atmosphere Model Version 0**

Jishi Zhang, Peter Bogenschutz, Qi Tang, Philip Cameron-smith, and Chengzhu Zhang

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Grand challenges

- Cross-scale parameterization
 - Some physical parameters are spatial & temporal resolution specific.
- Lack of benchmark observations to evaluate and help understand extreme simulations
 - E.g., wild-fire related pyrocumulonimbus...

