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THEME 2 RISKS & IMPACTS — QUESTIONS

m Q1: What is needed to improve the decision relevance of
regional projections and better capture system shocks?

m Q2: What are the bottlenecks for advancing regional modeling
to better capture risks and impacts?
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THEME 2 RISKS & IMPACTS — WHAT IS NEEDED

m What is needed to improve the decision relevance of regional
projections and better capture system shocks?

® We need to more holistically engage with the drivers and determinants
of regional risks

m Better quantify highly uncertain extremes that could be experienced
from both internal variability & anthropogenically forced climate
changes

m Decision relevance requires representation of institutionally complex
human systems (e.qg., water rights & infrastructure in the US West)
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THEME 2 RISKS & IMPACTS — A BROADER VIEW OF RISK

Systemic failures, extreme events and
‘hyper-risks’ emerge as a result of the

£
highly complex and highly interconnected @
/

Vulnerability

human-Earth systems

Dynamic relationships between agents,

systems and sectors transmit risk for one
to another

Drivers can amplify or buffer existing
threats

Adapted from Simpson et al. (2021). https://www.cell.com/one-earth/abstract/52590-3322(21)00179-2



THEME 2 RISKS & IMPACTS — A BROADER VIEW OF RISK

Aggregate
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Cascading Risks
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Human responses can be strong
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Figure adapted from Simpson et al. (2021). “A framework for complex climate change risk assessment”. In: One Earth 4.4,
1648 pages 489-501. ISSN: 2590-3322.
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COLORADO’S WEST SLOPE BASINS
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How could drought risks evolve for this region
kby 20507
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A MIDDLE-OF-THE-ROAD CLIMATE SCENARIO

Streamflow Changes Projected Using Five
Large Ensemble Simulations from Hoerling et al., (2024)

35 |1 Temp sensitivity 5%
Temp sensitivity 10%
30 Temp sensitivity 15%
25 i
€ 20 —
-]
o
15 II
) iill\
5
.-ll II
. In=ZH l_

=20 -10
Percent Streamflow Change (against 2000 2020 basellne)

10

Hoerling et al (2024) Journal of Climate, https://doi.org/10.1175/JCLI-D-23-0617.1
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A MIDDLE-OF-THE-ROAD CLIMATE SCENARIO

Streamflow Changes Projected Using Five
Large Ensemble Simulations from Hoerling et al., (2024)
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THEME 2 RISKS & IMPACTS - BETTER CAPTURE
EXTREMES

® The modern observation record of the last century is limited in
its ability to capture persistent drought extremes and the
internal variability of the system

® What if we had a 1000 replicate centuries of record? How different
would we perceive persistent drought risks?

®m What if these 1000 replicate centuries experienced 7% reductions of
streamflow due to climate change?



|. Classify historical record

into two states (wet and dry)

Log of Total Annual Flow (acft)
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A HIDDEN MARKOV MODEL-BASE STOCHASTIC
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lll. Determine the transition
probabilities between states
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CAPTURING INTERNAL VARIABILITY

Historical Correlation Matrix
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STATIONARY ENVELOPES (NO CLIMATE CHANGE)

a) Upper Colorado b) Gunnison
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CAPTURING CLIMATE CHANGE
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BN 0000
COMPUTATIONAL EXPERIMENT

Run “baseline” and “climate-
adjusted” ensembles through a
planning model

Each ensemble has 1,000 105
year records

Total of 210,000 years of
streamflow
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® StateDMI - StateMod Network
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STATEMOD VS MOSART-WM SCALE REPRESENTATION
ILLUSTRATION

Illustration for the Upper Colorado Basin where the grid represents 1/8-degree spatial resolution
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Our HMM full natural flow modeling is at
the scale of 1000+ points of diversion
across the West Slope Basins (so 1000
centuries at ~1000 node locations)




DELIVERIES TO LAKE POWELL
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DELIVERIES TO LAKE POWELL
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DELIVERIES TO LAKE POWELL / Driest >-year
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DELIVERIES TO LAKE POWELL
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DELIVERIES TO LAKE POWELL
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DELIVERIES TO LAKE POWELL
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DELIVERIES TO LAKE POWELL
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DELIVERIES TO LAKE POWELL
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DELIVERIES TO LAKE POWELL
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DELIVERIES TO LAKE POWELL

Extreme events that emerge from
sampling internal variability are
drier and more persistent than the
observed historical record
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DELIVERIES TO LAKE POWELL
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DELIVERIES TO LAKE POWELL

The ‘optimistic’ climate-adjusted
ensemble yields a regime change
to persistently severe dry periods
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CHANGES IN SPATIALLY COMPOUNDING DROUGHT?

Historical record
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CHANGES IN SPATIALLY COMPOUNDING DROUGHT?

Temporal
definitions
of drought
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CHANGES IN SPATIALLY COMPOUNDING DROUGHT?

Historical record
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CHANGES IN SPATIALLY COMPOUNDING DROUGHT?

Historical record
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CHANGES IN SPATIALLY COMPOUNDING DROUGHT?
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CHANGES IN SPATIALLY COMPOUNDING DROUGHT?
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Even a middle-of-the-road climate change
case yields substantial risk for change to long
lived spatially extensive drought regimes.
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THEME 2 RISKS & IMPACTS — WHAT IS NEEDED

m What are the bottlenecks for advancing regional modeling to
better capture risks and impacts?

m There is a computational bottleneck in utilizing large ensemble ESM
and/or regional runs at the scales needed

" |/t take time and effort to capture ‘holistic treatments’ of risk beyond
characterizing natural hazards

m Decision relevance requires perspectives beyond ‘modelers modeling’

® There needs to be a better bridge between the physical and statistical
modeling communities in better capturing extremes and risks

40



Thank you! Happy to follow up in our
discussion.




ADDITIONAL SLIDES



Theoretical Quantiles
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CAPTURING SPATIAL CORRELATION

Historical Correlation Matrix Synthetic Correlation Matrix
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Drought

A period when the 5-year
rolling mean flow drops more
than 7 standard deviation
below the mean of the entire
record

U1 < Upist — 0.5 opig¢

Journal of Climate

Assessing the Risk of Persistent Drought Using Climate Model Simulations and
Paleoclimate Data

Toby R. Ault, Julia E. Cole, Jonathan T. Overpeck, Gregory T. Pederson, and David M. Meko

Print Publication: 15 Oct 2014

IDENTIFYING DROUGHT

Annual Flow (cubic feet per year)
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