The E3SMv2.1 Seasonal-to-Multiyear Large Ensemble (SMYLE) Forecast System

A Comparative Global Skill Assessment

NCAR/CATALYST: Steve Yeager¹, Gerald Meehl¹, Yaga Richter¹, Nan Rosenbloom¹, Sasha Glanville¹, Gary Strand¹, Julie Caron¹

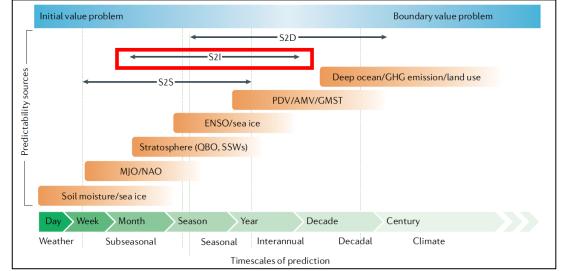
DOE/E3SM: Luke Van Roekel², LeAnn Conlon², Walter Hannah³, Chris Golaz³

catalyst

¹NSF National Center for Atmospheric Research, Boulder, CO ²DOE Los Alamos National Laboratory, Los Alamos, NM ³DOE Lawrence Livermore National Laboratory, Livermore, CA

Extended Seasonal (S2I) Prediction

- Predictability knowledge gap for timescales in-between traditional seasonal (0-12 month) and decadal (1-10 year) efforts
- New experimental protocol needed to fill that gap:
 - Seasonal: 12-month hindcasts initialized monthly
 - ★ Ext-Seasonal: 24+-month hindcasts initialized quarterly
 - **Decadal**: 10-year hindcasts initialized yearly


The Seasonal-to-Multiyear Large Ensemble (SMYLE) prediction system using the Community Earth System Model version 2

Stephen G. Yeager¹, Nan Rosenbloom¹, Anne A. Glanville¹, Xian Wu¹, Isla Simpson¹, Hui Li¹, Maria J. Molina¹, Kristen Krumhardt¹, Samuel Mogen², Keith Lindsay¹, Danica Lombardozzi¹, Will Wieder¹, Who M. Kim¹, Jadwiga H. Richter¹, Matthew Long¹, Gokhan Danabasoglu¹, David Bailey¹, Marika Holland¹, Nicole Lovenduski², Warren G. Strand¹, and Teagan King¹

Yeager et al. (2022, Geosci Mod Dev, 10.5194/gmd-15-6451-2022)

Office of Science

Predictability Sources and Timescales:

Meehl et al. (2021, Nature Reviews, 10.1038/s43017-021-00155-x)

Extended Seasonal (S2I) Prediction

Skilful predictions of the Summer North Atlantic Oscillation

(2023, Communications Earth & Environment)

Nick Dunstone 🖾, Doug M. Smith, Steven C. Hardiman, Leon Hermanson, Sarah Ineson, Gillian Kay, Chaofan Li, Julia F. Lockwood, Adam A. Scaife, Hazel Thornton, Mingfang Ting & Lei Wang

A multiyear tropical Pacific cooling response to recent Australian wildfires in CESM2

(2023, Science Advances)

JOHN T. FASULLO (D), NAN ROSENBLOOM (D), AND REBECCA BUCHHOLZ (D) Authors Info & Affiliations

Multi-month forecasts of marine heatwaves and ocean acidification extremes (2024, Nature Geoscience, in review)

Samuel Mogen, Nicole Lovenduski, Stephen Yeager, Antonietta Capotondi, and 7 more

The Seasonal-to-Multiyear Large Ensemble (SMYLE) prediction system using the Community Earth System Model version 2

Stephen G. Yeager¹, Nan Rosenbloom¹, Anne A. Glanville¹, Xian Wu¹, Isla Simpson¹, Hui Li¹, Maria J. Molina¹, Kristen Krumhardt¹, Samuel Mogen², Keith Lindsav¹, Danica Lombardozzi¹, Will Wieder¹, Who M. Kim¹, Jadwiga H. Richter¹, Matthew Long¹, Gokhan Danabasoglu¹, David Bailey¹, Marika Holland¹, Nicole Lovenduski², Warren G. Strand¹, and Teagan King¹

Yeager et al. (2022, Geosci Mod Dev, 10.5194/gmd-15-6451-2022)

Robust Changes in North America's Hydroclimate Variability and Predictability

(2023, Earth's Future)

Sanjiv Kumar 🔀, Candida F. Dewes, Matthew Newman, Yanan Duan

A Simple Statistical Postprocessing Scheme for Enhancing the Skill of

Seasonal SST Predictions in the Tropics (2024, Mon Wea Rev)

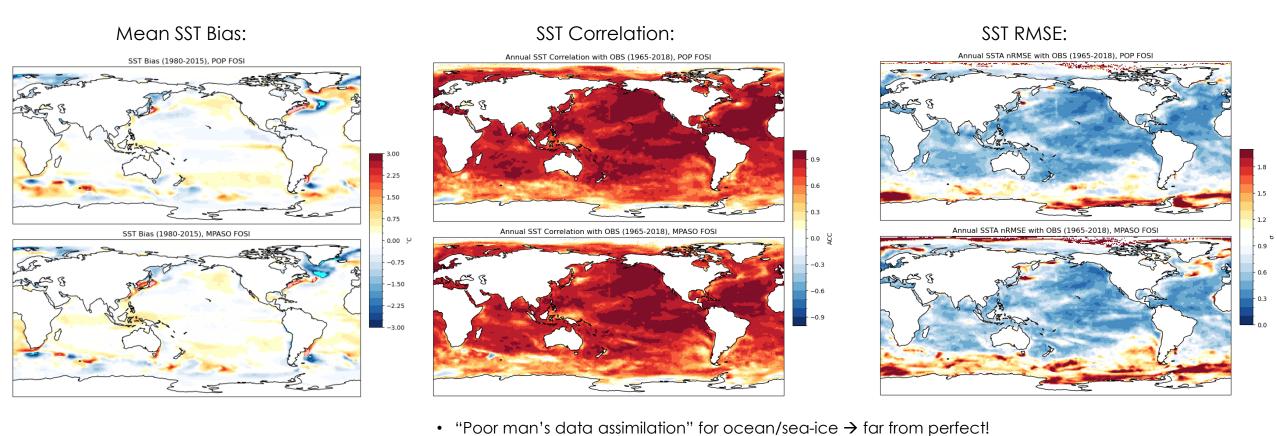
Ingo Richter D Jayanthi V. Ratnam, Patrick Martineau D, Pascal Oettli, Takeshi Doi, Tomomichi Ogata, Takahito Kataoka, and François Counillon

Skillful Multi-Month Predictions of Ecosystem Stressors in the Surface and Subsurface Ocean (2023, Earth's Future)

Samuel C. Mogen 🔀, Nicole S. Lovenduski, Stephen Yeager, Lydia Keppler, Jonathan Sharp, Steven J. Bograd, Nathali Cordero Quiros, Emanuele Di Lorenzo, Elliott L. Hazen ... See all authors 🗸

Seasonal-to-MultiYear Large Ensemble Hindcast Experiments

NCAR **ENERGY** Office of Science


	CESM2 SMYLE	E3SMv2.1 SMYLE	
Model -ocean -atmosphere -land -sea ice	CESM2 POP2 (1°, 60L) CAM6-FV (1°, 32L) CLM5 (1°) CICE5 (1°)	E3SMv2.1 MPAS-O (1°, 60L) EAMv2 (1°, 72L) ELMv2 (1°) MPAS-SI (1°)	CESM2 POP FOSI: 27 26 25 24 0B5
Forcing -through 2014 -2015 onwards	CMIP6 SMBB historical RCP3.70	CMIP6 SMBB historical RCP3.70	POP-FOSI 1965 1980 1995 2010
Initialization -ocean -atmosphere -land -sea ice	Full field POP2 FOSI (1°, OMIP2) JRA55 forced CLM5 (CRU-JRA) POP2 FOSI (1°, OMIP2)	Full field MPAS-O FOSI (1°, OMIP2) ERA5 forced ELMv2 (CRU-NCEP) MPAS-O FOSI (1°, OMIP2)	E3SMv2.1 MPAS-O FOSI: 0 29 28 27 26 27 26
Hindcasts -start dates -initialization years -length -ensemble size	1 st of Nov, Feb, May, Aug 1970-2019 24 months 20	1 st of Nov, Feb, May, Aug 1970-2019 28 months 20	25 24 0BS 1965 1980 1995 2010

 Forced Ocean/Sea-Ice (FOSI) simulations yield reasonable reproduction of historical ocean/sea-ice states (in particular, tropical Pacific)

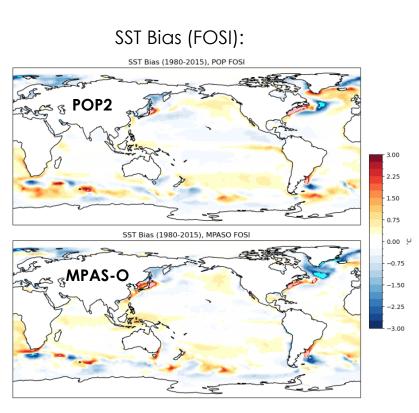
cata

Nino-3.4 SST

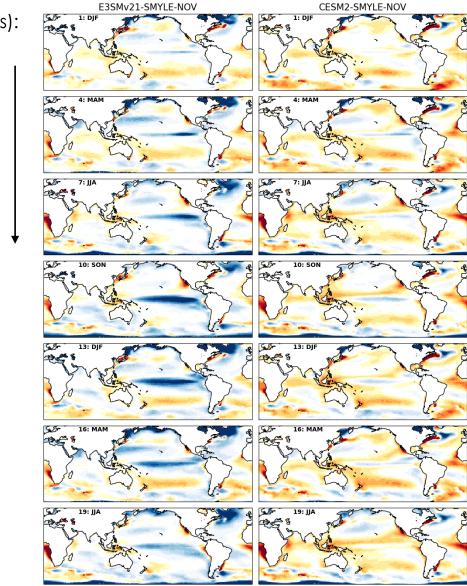
Fidelity of Ocean Initial Conditions

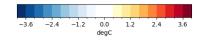
- - Ocean initial conditions for E3SMv2.1-SMYLE are comparable to those used for CESM2-SMYLE

TOP ROW: POP2 BOTTOM ROW: MPAS-O


NCAR **ENERGY** Office of Science

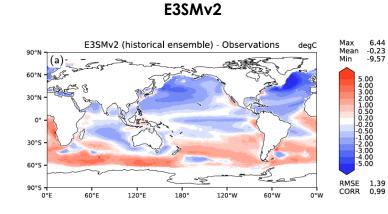
SST Bias (Coupled Hindcasts):


Forecast Leadtime

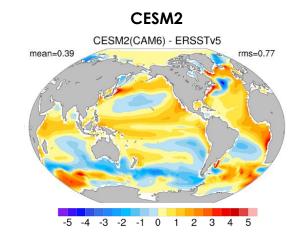

CESM2-SMYLE-NOV

NCAR **ENERGY** Office of Science

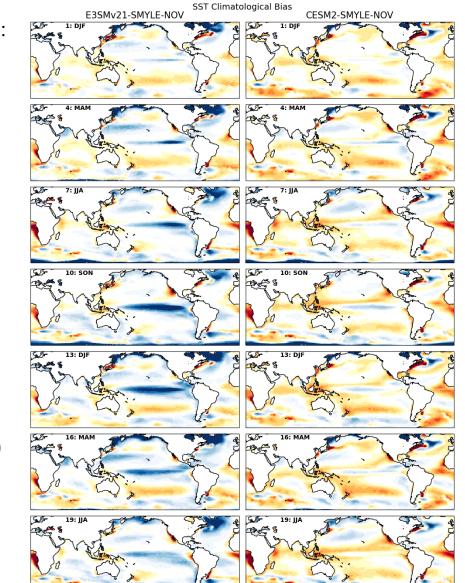
- Coupled model systematic bias develops rapidly
- Very different lead-dependent bias patterns in E3SMv2.1 and CESM2



Hindcast Drift


SST Bias (Coupled Hindcasts):

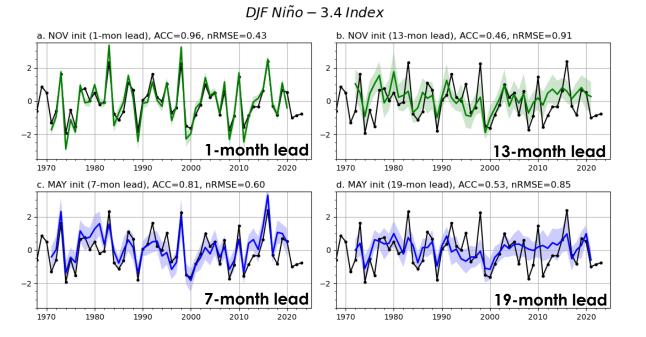
SST Bias (Coupled Historical):



Golaz et al. (2022, JAMES, 10.1029/2022MS003156)

NCAR **ENERGY** Office of Science

Danabasoglu et al. (2020, JAMES, 10.1029/2019MS001916)

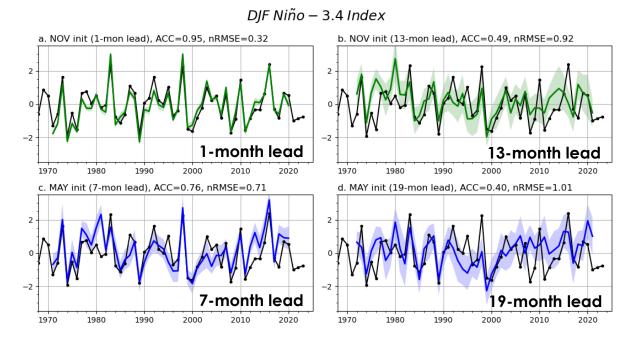


-3.6 -2.4 -1.2 0.0 1.2 2.4 3.6 degC

ENSO Prediction Skill

E3SMv2.1-SMYLE

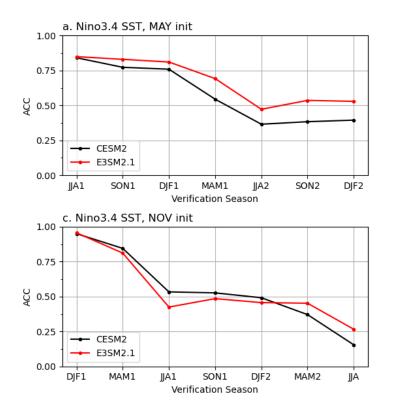
• Remarkably similar ENSO skill despite very different mean model biases


Office of

Science

• Both systems are competitive with the NMME multi-model mean

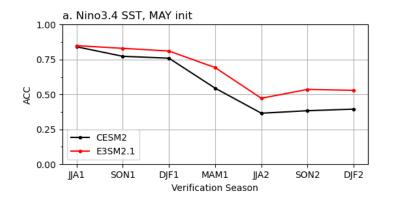
NCAR

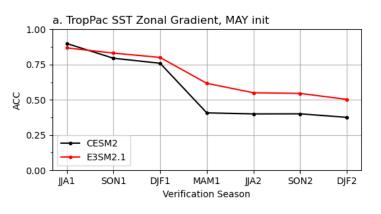

CESM2-SMYLE

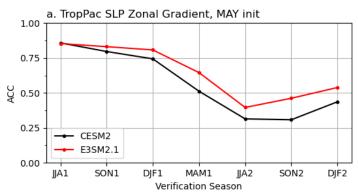
• Evidence of robust multiyear-lead ENSO forecasts-of-opportunity

catalyst

ENSO Prediction Skill

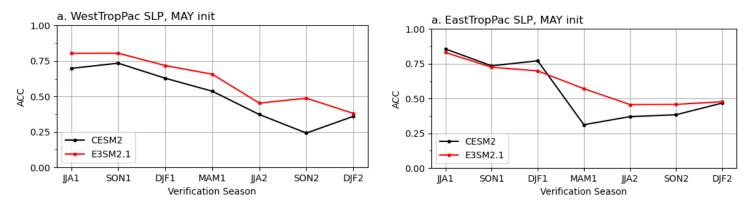

- Start-month dependence on skill comparison
- E3SMv2.1 outperforms CESM2 for MAY hindcasts




catal

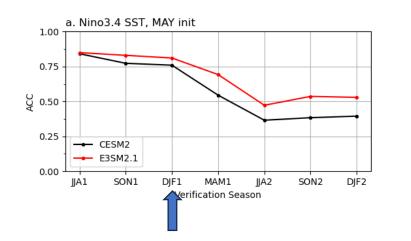
/st

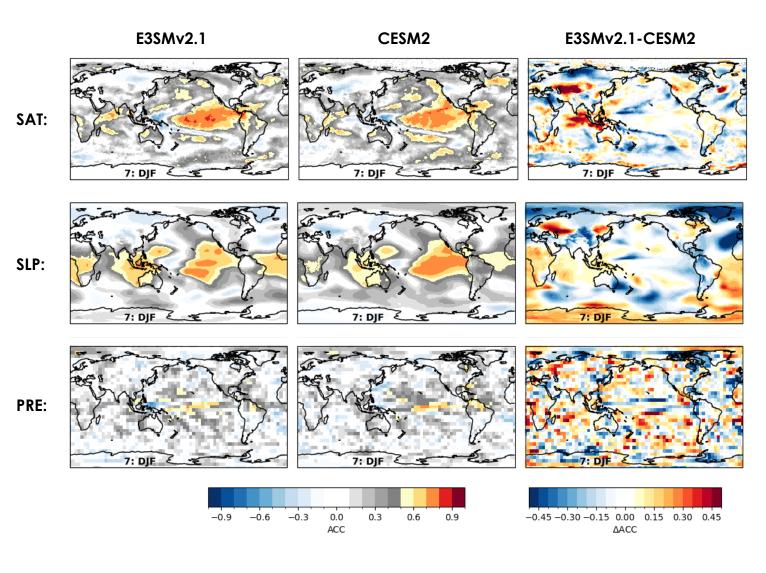
ENSO Prediction Skill



cata

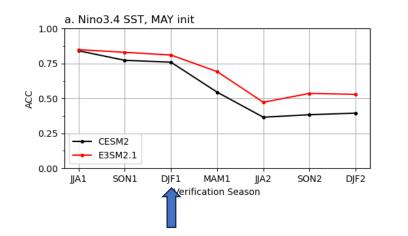
St

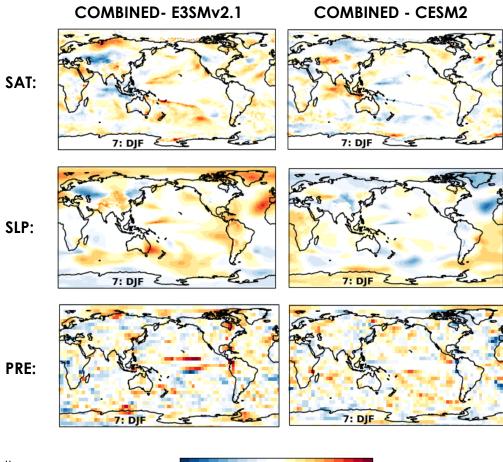



 Improved Niño3.4 skill in E3SMv2.1 due to improved prediction of Bjerknes feedback (SLP over MC/IO)?

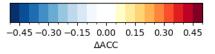
ENSO Impacts Skill

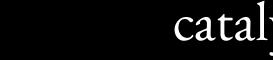
Anomaly Correlation Coefficient (after detrending):


catalyst


• Skill comparison for seasonal impacts is mixed

ENSO Impacts Skill


Anomaly Correlation Coefficient (after detrending):



Combined 40-member multi-model system appears generally superior to individual systems

Office of Science

vst

Summary

- Extended-seasonal initialized prediction hindcasts using E3SMv2.1 have been completed through CATALYST/E3SM collaboration
- E3SMv2.1-SMYLE skill for ENSO is similar to that from CESM2-SMYLE despite different background mean state bias
- Promising potential to explore seasonal predictability dependence on model structure & process representation

