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Are observed changes in land carbon stocks consistent
with land carbon flux inversions?

t=2023
f Fiana (t) - dt = ACland
t=1958

ACigna = ACveg + ACitter + ACsoi



Integrals of global and NH terrestrial sinks:

GCP: Global net land C sink integral

from 1959-2021: 55 Pg C
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Global budget: 1959-2021:
Creg =408 Pg C
AC,, 4 55PgC

Percent change: 16%

Ciais et al. (2019): NH net land sink
integral from 1959-2014: 79 Pg C
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Fig. 3 | Global and Northern Hemisphere land fluxes. a, Global net land
flux (L), this flux includes land-use change emissions and other processes
causing land uptake. b, Northern land sink (Ly) inferred from the two-box
inversion model constrained by measurements of the interhemispheric
gradient and the ocean sink interhemispheric difference from ocean

models (Methods).

NH budget: 1959-2021:
Cey = 261PgC
AC,.q = 81PgC

Percent change: 45%



Improvements in satellite remote sensing
are narrowing uncertainties regarding the magnitude, spatial pattern,
and trend of terrestrial aboveground carbon stocks
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Global satellite-derived estimates of biomass carbon are considerably
lower than model estimates from 2000 to 2019

Remote Sensing-derived
from JPL and Chloris CMIP6 multi-model mean
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Trends in modeled vegetation carbon are about 70%
higher than the remote-sensing derived estimate
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The satellite-constrained global land carbon sink is 0.8 £ 0.7 Pg C/y for
2001-2019, about 2-fold lower than the GCP estimate of 1.6 Pg C/y

A) Global B) Northern Hemisphere
50 1 I I 1 I 1 I 1 I I 50 I 1 I I 1 1 I I I I
= Global Carbon Projgect (| - Ciais et al. (2019)
- CMIP6 ensemble - 2-box inversion
A | — Remote sensing-derived J 40 b= CMIP6 ensemble 1

— Remote sensing-derived

W
o

Carbon accumulation (Pg C)
= N
o o

o

| | |

| | 1 | 1

| | | 1 | 1 | |
2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2001 2003 2005 2007 2009 20

1 1 1 1
11 2013 2015 2017 2019
Year Year



How do you then close the global carbon budget?

Global Carbon

Weak Land Sink

Flux component: . . Percent

Units: Pg C/y Project: Hypothesis: difference
mean lo mean lo

Fossil fuel emissions 86 + 04 81 + 0.9 -6

Atmospheric growth rate 46 = 0.1 46 = 0.1 0

Ocean sink 25 + 04 2.7 + 05 8

Land sink 1.6 + 0.7 0.8 = 0.7 -47




A weaker fossil fuel flux helps to reconcile several disparate constraints:

Two-box model NH sink with
6% Reduction in FF Flux: GCP Fossil Fuel Flux 6% Reduction in FF Flux
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Ecosystem flux (NPP or GPP; Pg Cly)

Carbon use efficiency (unitless)

Why do many CMIP6 models accumulate too much C?
They are not capturing increasing disturbance trends, decoupling of GPP and NPP, and
limits to soil carbon uptake from microbial feedbacks and mineral stabilization
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Could it be in the soil instead of aboveground biomass?

, , , Radiocarbon content (del 14C)
* The dnNSWer 1s UnllkEIV for mlneral Surface soil: 0-30cm Subsurface soil: 30-100cm

soils because they are too old, and
the carbon flows in a steady state
are too small to influence a change
on a 100-year time scale

* Also, likely carbon storage is
limited by mineral stabilization,
which reflects long-term
weathering rates — this is unlikely
to change quickly.

* Models represent soil carbon flows
with turnover times that too fast;
this means they draw in too much
C from NPP changes (e.g., CO,
fertilization) on century timescales
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He, Y., S.E. Trumbore, M.S. Torn, J.W. Harden, L.J.S. Vaughn, S.D. Allison, and J.T. Randerson. 2016. Radiocarbon constraints
imply reduced carbon uptake by soils during the 21st century. Science. 353:1419-1424. doi: 10.1126/science.aad4273.

Shi, Z., S.D. Allison, Y. He, P.A. Levine, A.M. Hoyt, J. Beem-Miller, W. Wieder, Q. Zhu, S.E. Trumbore, and J.T. Randerson.
2020. The age distribution of global soil carbon inferred from radiocarbon measurements. Nature Geosciences. 13: 555—
559. doi: 10.1038/s41561-020-0596-z.



How to make the weak sink compatible with other carbon cycle
CO n St ra i ntS ? Obselrvationql SIF tirrlwe serieIS
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Conclusions and Implications:

Major advances in satellite remote sensing now enable direct estimation of the land
carbon sink

Fossil fuel emissions may have a small systematic positive bias and larger uncertainties
than currently assumed. These emissions are largely self-reported to the IEA and the UN. A
possible conflict of interest may arise in that currency valuation, capital investment, and
trade negotiation are all tied to the projection of growth.

— Did the Kyoto Protocol incentivize overreporting for Annex B countries?
— Should the COP strengthen the review system for fossil fuel emissions?

The potential for improved forest management may be overestimated in some situations
(e.g., Coffield et al., 2022)

Could we implement a stock change approach across Ameriflux using in-situ lidar and
inventory protocols?

Use of aboveground biomass time series from lidar/Landsat will be a critically important
emergent constraint for the land carbon sink in CMIP7
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Is there be a high bias in the fossil inventory, and why?

Emissions are often self-reported, and often closely connected to energy and GDP statistics
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A) Remote sensing - derived
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Average CO, concentration (ppm)

Primary Evidence for a Strong Terrestrial Carbon Sink:
Interhemispheric Gradient of CO,, O,/N,, and Data-constrained Ocean Models
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IPCC Third Assessment (2001)
Global 1990s Carbon Budget

Budget component:
(Pg C/y)

Fossil fuel emissions: 6.3 +0.4
Atmospheric increase: 3.2+0.1
Ocean uptake: 1.7+0.5
Net Land flux: 1.4+0.7

Fossil fuel emissions uncertainty is assumed to be about 5% with a Gaussian distribution

Net land flux is often computed as a residual in budgets, as the difference between fossil emissions and
accumulation in the atmosphere and oceans

O, measurements confirm the presence of a large terrestrial sink

Net land flux often decomposed into a positive tropical deforestation flux and a residual terrestrial sink



Mechanisms for a terrestrial carbon sink

* CO, fertilization
* Lengthening growing season from warming
* Nitrogen deposition

e Aerosol-driven enhancements of diffuse
ight

* Decreases in O, exposure (in some regions)

* Land use change from forest expansion
(China) and recovery (Eastern US)

See recent review of mechanisms by Sophie Ruehr in
Nature Reviews

Delucia et al. (1999) Science Duke FACE



Northern Hemisphere Land sink (Pg C/y)

-1

The northern hemisphere land carbon sink from
1959-2021 derived from a 2-box atmospheric model

L —— NH Land sink from 2-box model using GCP and OCIM fluxes
-------- Ciais et al. (2019) NH land sink

1960 1970 1980 1990 2000 2010
Year

2020

We extended the methodology of
Ciais et al. (2019) using more
recent atmospheric CO, data
from Mauna Loa and the South
Pole through 2021

Small adjustments for the ocean
biological pump, the river carbon
loop, the atmospheric reduced
chemistry pump, and the
biosphere rectifier effect

The integral of carbon uptake in
the NH from 1959 to 2021 is:
81+25PgC




How do the carbon sink integrals compare with vegetation carbon pool sizes?

Global budget: 1959-
2021

veg

AC.., = 55PgC

C =408 Pg C (A) Remote sensing - derived
Observations from:

Percent change: 16% Xu, Saatchi, et al. (2021)

Science Advances

And Baccini et al. (2017)
Science

NH budget: 1959-2021
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AGB accumulation from

remote sensing was 430 Tg,

a factor of 3 lower than
CMIP6 models (1520 Tg)
over 31 years

Jonathan A. Wang, Alessandro Baccini, Mary
Farina, James T. Randerson, and Mark A.
Friedl (2021) Nature Climate Change.
Disturbance suppresses the aboveground
carbon sink in North American boreal
forests.
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Ocean sinks in the GCP budget may be somewhat
low relative to observation-constrained estimates

We adjust the GCP ocean flux
estimate to match the Gruber
et al. (2019) anthropogenic
inventory from 1994-2007 and
further adjust for the natural
outgassing from ocean heat
uptake using the estimates
from Fu et al. (2022)
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TRANSCOM Project Confirms a NH

Land Carbon Sink
4
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Vertical mixing must be accurately simulated for the
atmospheric inversions to work

Weak Northern and Strong Tropical
Land Carbon Uptake from Vertical
Profiles of Atmospheric CO,

Britton B. Stephens,™* Kevin R. Gurney,” Pieter P. Tans,® Colm Sweeney,? Wouter Peters,’
Lori Bruhwiler,? Philippe Ciais,® Michel Ramonet,* Philippe Bousquet,* Takakiyo Nakazawa,’
Shuji Aoki,® Toshinobu Machida,® Gen Inoue,” Nikolay Vinnichenko,?t Jon Lloyd,’

Armin Jordan,*® Martin Heimann,® Olga Shibistova,** Ray L. Langenfelds,*? L. Paul Steele,?
Roger ]. Francey,*? A. Scott Denning®3

Measurements of midday vertical atmospheric CO, distributions reveal annual-mean vertical CO,
gradients that are inconsistent with atmospheric models that estimate a large transfer of terrestrial
carbon from tropical to northern latitudes. The three models that most closely reproduce the
observed annual-mean vertical CO, gradients estimate weaker northern uptake of —1.5 petagrams
of carbon per year (Pg C year™®) and weaker tropical emission of +0.1 Pg C year™* compared
with previous consensus estimates of —2.4 and +1.8 Pg C year™?, respectively. This suggests

that northern terrestrial uptake of industrial CO, emissions plays a smaller role than previously
thought and that, after subtracting land-use emissions, tropical ecosystems may currently be
strong sinks for CO,.
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How this hypothesis could be wrong: c. Our study view2

We need more time to refine satellite-derived
AGB trends

There is a significant ocean organic carbon sink
in coastal shelf sediments and in the open
ocean, driven by increasing nutrient delivery
and accelerating ocean NPP

There is probably a small but important carbon
sink in cities (0.1-0.2 Pg C/y)

We have underestimated accumulation in litter
and coarse woody debris

Hemming-Schroeder et al. (2023)



Analysis of Landsat time series reveals loss of tree cover in California

A ol * California lost about 7% of its tree cover
2,500 Bore from 1984 through 2020
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NASA MODIS fractional tree cover changes provide evidence for a lower
rate of forest expansion
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GLOBAL CARBON Global Carbon Project budget

\_PROJECT
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Carbon emissions are partitioned among the atmosphere and carbon sinks on land and in the ocean
The “imbalance” between total emissions and total sinks is an active area of research

Balance of sources and sinks

40 Gt
COs
30 -

Fossil carbon
Includes carbonation sink

20 -

10 -

Land-use change

Ocean sink
-10 -
20 - / Land sink
Total estimated sources do
-30 - not match total estimated
sinks. This imbalance is an Atmosphere
40 - active area of research.
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Source: Friedlingstein et al 2022: Global Carbon Project 2022



https://doi.org/10.5194/essd-14-4811-2022
http://www.globalcarbonproject.org/carbonbudget/
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