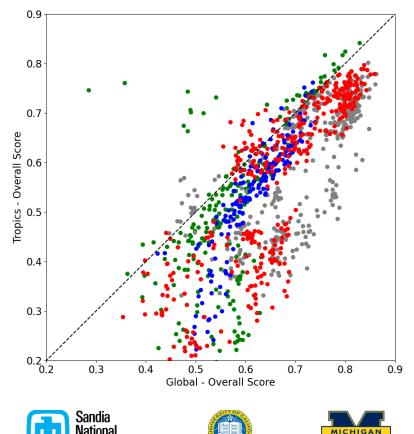
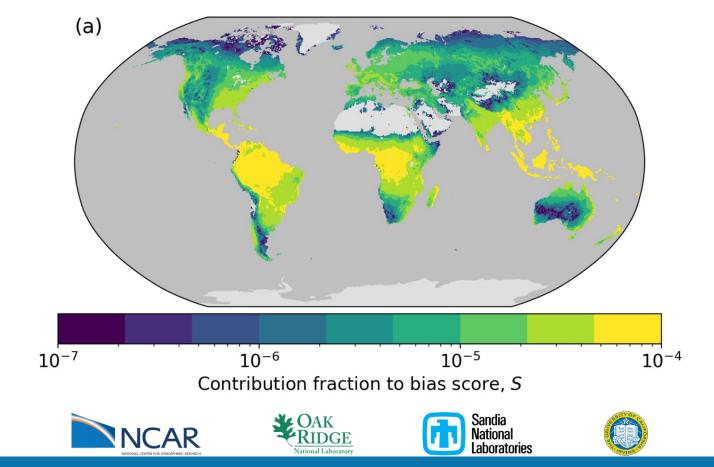
Methodological Developments in the International Land Model Benchmarking (ILAMB) Effort


Nathan Collier, Forrest Hoffman, Dave Lawrence

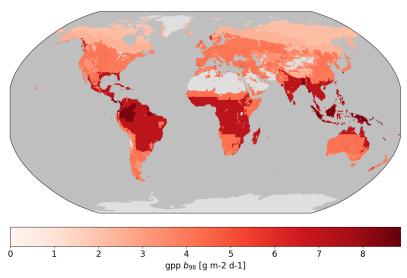
- We have observed that our current scoring methodology favors performance in the tropics.
- Plot shows that for many datasets, the tropics score correlates strongly to the global score
- This is due to our choice of normalizing errors by the variability of the reference data and the use of mass weighting

RadiationandEnergyCycle

Forcinas



Bias score influence map: gpp | FLUXCOM

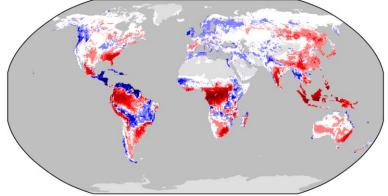

rrrrrr

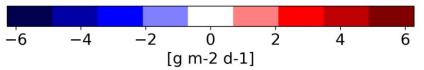
BERKELEY

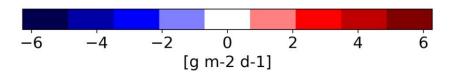
A Change in How We Normalize Errors

The gpp 98th error quantile within Whittaker biomes across CMIP5v6 models.

- The goal is to make errors from different areas of the globe comparable.
- Select a set of regions which represent biomes in which errors can be treated as commensurate in order of magnitude.
- Inside each region, for each variable, and across a selection of models, compute the 98th quantile of |bias(x)| with respect to all datasets for that variable.

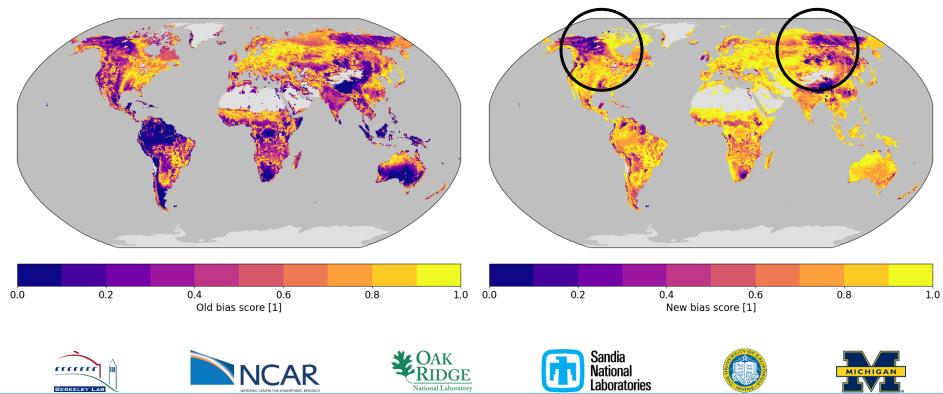






Bias of CESM1-BGC

Notice larger bias in high latitudes, anomalous among CMIP models **Bias of CESM2**



With the new methodology, these areas light up clearly

Other Ways to Use ILAMB Data

In [1]: import intake

...: cat = intake.open_catalog("https://raw.githubusercontent.com/nocollier/intake-ilamb/main/ilamb.yaml")

In [2]: cat[']

III [2]. Cat[
'albedo CERESed4.1'	'lai MODIS'	'rlns GEWEX.SRB'
'albedo GEWEX.SRB'	'mrro CLASS'	'rlns WRMC.BSRN'
'biomass ESACCI'	'mrro Dai'	'rlus CERESed4.1'
'biomass NBCD2000'	'mrro LORA'	'rlus FLUXNET2015'
'biomass Thurner'	'mrsos WangMao'	'rlus GEWEX.SRB'
'biomass Tropical'	'nbp GCP'	'rlus WRMC.BSRN'
'biomass US.FOREST'	'nbp Hoffman'	'rns CERESed4.1'
'burntFractionAll GFED4.1S'	'nee FLUXCOM'	'rns CLASS'
'cSoil HWSD'	'nee FLUXNET2015'	'rns FLUXNET2015'
'cSoil NCSCDV22'	'pfext NSIDC'	'rns GEWEX.SRB'
'co2 NOAA.GMD'	'pr CLASS'	'rns WRMC.BSRN'
'dtr CRU4.02'	'pr CMAPv1904'	'rsds CERESed4.1'
'evspsbl GLEAMv3.3a'	'pr FLUXNET2015'	'rsds FLUXNET2015'
'evspsbl MOD16A2'	'pr GPCCv2018'	'rsds GEWEX.SRB'
'evspsbl MODIS'	'pr GPCPv2.3'	'rsds WRMC.BSRN'
'fBNF DaviesBarnard'	'reco FLUXCOM'	'rsns CERESed4.1'
'gpp FLUXCOM'	'reco FLUXNET2015'	'rsns FLUXNET2015'
'gpp FLUXNET2015'	'regions_continental ILAMB'	'rsns GEWEX.SRB'
'gpp WECANN'	'regions_continental IPCC'	'rsns WRMC.BSRN'
'hfdsl CLASS'	'regions_global_land ILAMB'	'rsus CERESed4.1'
'hfls CLASS'	<pre>'regions_global_land_no_ant ILAMB'</pre>	'rsus FLUXNET2015'
'hfls DOLCE'	'regions_whittaker_biomes ILAMB'	'rsus GEWEX.SRB'
'hfls FLUXCOM'	'rhums CRU4.02'	'rsus WRMC.BSRN'
'hfls FLUXNET2015'	'rhums ERA5'	'swe CanSISE'
'hfls WECANN'	'river_basins Dai'	'tas CRU4.02'
'hfss CLASS'	'rlds CERESed4.1'	'tas FLUXNET2015'
'hfss FLUXCOM'	'rlds FLUXNET2015'	'tasmax CRU4.02'
'hfss FLUXNET2015'	'rlds GEWEX.SRB'	'tasmin CRU4.02'
'hfss WECANN'	'rlds WRMC.BSRN'	'twsa GRACE'
'lai AVH15C1'	'rlns CERESed4.1'	
'lai AVHRR'	'rlns FLUXNET2015'	

In [1]: import intake ...: cat = intake.open catalog("https://raw.githubusercontent.com/nocollier/intake-ilamb/main/ilamb.vaml") In [2]: gpp = cat['gpp | WECANN'].read() In [3]: gpp Out[3]: <xarray.Dataset> Dimensions: (time: 108, nb: 2, lat: 180, lon: 360) Coordinates: * time (time) object 2007-01-16 12:00:00 ... 2015-12-16 12:00:00 (lat) float64 89.5 88.5 87.5 86.5 ... -86.5 -87.5 -88.5 -89.5 * lat * lon (lon) float64 -179.5 -178.5 -177.5 -176.5 ... 177.5 178.5 179.5 Dimensions without coordinates: nb Data variables: time bounds (time. nb) object 2007-01-01 00:00:00 ... 2016-01-01 00:00:00 (time, lat, lon) float64 9.969e+36 9.969e+36 ... 9.969e+36 gpp Attributes: Water, Energy, and Carbon with Artificial Neural Networks ... title: version: Columbia University institutions: Solar Induced Fluorescence (SIF), Air Temperature, Precipi... source: history: \n2020-11-02: downloaded https://avdc.gsfc.nasa.gov/pub/da... $\ \$ author = {Alemohammad, S. H... references: \ntime period: 2007-01 through 2015-11; temporal resolutio... comments: CF-1.8 convention:

- Shift to xarray as a base object.
- Adapt to the way researchers are working.
- Working from the bottom up and making soft releases as we go.
- Each new capability will be fully documented.
- Great time to get me your wish lists.

Q Search I WANT TO ... **Run Analysis in a Notebook** Add an Analysis METHODS **Preliminary Definitions** Bias Relationships Global Net Ecosystem Carbon Balance REFERENCE Package API \sim COMMUNICATE

Run Analysis in a Notebook

ilamb3 has been redesigned to allow you to import our analysis functions and run them locally on your own datasets. This means that you can apply our analysis methods in your own Jupyter notebooks and python scripts. First, we import the functionality that we will need.

import intake import matplotlib.pyplot as plt

from ilamb3.analysis import bias_analysis

Matplotlib is building the font cache; this may take a moment.

ILAMB analysis functions are available in the ilamb3.analysis package. You can import just this package and browse the member functions to see what is available. In this example, we will run the ILAMB bias methodology and so we import only this function. The ILAMB analysis functions have been redesigned to take as inputs two xarray datasets, a reference and a comparison. In this example, we will load two of our biomass reference data products and use the ILAMB bias methodology to compare them.

ILAMB reference datasets are available through an intake catalog. To use it, you only need to install the intake package and then add the following call to <code>open_catalog()</code>. We will use the catalog to load the biomass products from Xu & Saatchi, 2021 and ESACCI.

cat = intake.open_catalog(

C

© 2 0

https://github.com/rubisco-sfa/ilamb3

