

New Observational Constraints for Aerosol and Aerosol-Cloud Interactions in E3SM

August 8th, 2024

Matthew Christensen, Charlotte Beall, Shuaiqi Tang, Adam Varble, Yi Qin, Jerome Fast, and Po-Lun Ma

PNNL is operated by Battelle for the U.S. Department of Energy

EAGLES Liquid Cloud Testbed

Cover a wide range of cloud/meteorological regimes and aerosol conditions

Abundant observational data

Combine E3SM-RRM, LES, and observational data for model evaluation and analysis

Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package Tang et al., 2022; 2023, GMD

Motivation: The ESMAC Diags package was developed to facilitate routine evaluation of aerosols, clouds, and ACIs simulated in the Energy Exascale Earth System Model (E3SM) from the US Department c Energy (DOE).

Dataset:

- 1. Field campaigns
 - HI-SCALE, ACE-ENA, MAGIC, CSET, MARCUS, SOCRATES
- 2. Satellite observations
 - Geostationary (VISST algorithm)
- 3. Permanent ARM sites
- 4. Ship MAGIC & MARCUS

Geographical regions

- Eastern North Atlantic (ENA)
- Central US
- Northeastern Pacific
- Southern Ocean

<u>Cloud regimes</u>: Frequent liquid- or mixed-phase clouds with extensive measurements.

Measuremnts: Meteorology, aerosol size distribution, composition, and CCN, cloud properties (droplet size, concentration, geometrical thickness), TOA radiation.

Statistical Outputs: Single-variable & multivariable diagnostics, Percentiles, Histograms, Joint-histograms, Heatmaps

Pacific Northwest NATIONAL LABORATORY

ESMAC Diags provides insights into E3SM state and process deficiencies Tang et al., 2022; 2023, GMD

- But... coupling of aerosol & cloud number concentrations is too strong.
 - activation.

And... liquid water path response to a perturbed cloud droplet number concentration behaves differently in E3SMv2 than in observations.

Bias in processes which control aerosol

Estimating aerosol radiative forcing from different observations and models depends on assumptions of cloud water holding capacity Varble et al (2023), ACP

Radiative Forcing

- Generally good agreement found with regards to the Twomey effect and LWP response albeit with slightly positive bias in E3SM.
- Large variability in radiative effect depends on how the data is aggregated.
- Cloud adiabaticity generally increases as droplet number concentration increases (in observations).

- Cloud adiabaticity in E3SM is too small and there is no dependence on it as a function of Nd.
- Observational TOA retrievals assume a constant cloud adiabaticity of 0.8, while surface retrievals do not assume constant adiabaticity.
 - More work needed to quantify this from space to determine meteorological drivers responsible for sub-adiabatic clouds and implement improvements in E3SM.

Use Lagrangian framework to quantify ACI throughout cloud lifetime Christensen et al (2023), ACP

Eulerian Framework

Clouds are not static and adjust to aerosol and meteorological changes over their lifetime thus necessitating a Lagrangian framework...

Lagrangian Framework

Scientific Questions:

- 1. Can changes in surface CCN concentration affect the radiative properties and lifetime of clouds passing by Azores?
- 1. How well does E3SMv1 represent aerosol-cloud interactions in a Lagrangian framework?

LWP-N_d Relationship Christensen et al (2023), ACP

- Polluted clouds have larger droplet concentrations for up to 2-days.
- E3SMv1 captures N_d -LWP relationship but it is not sensitive to warm-rain experiments.
- Positive bias simulated in E3SMv1 N_d with respect to observations.
- Polluted clouds are too thin in E3SM.

Pacific

Northwest

Pacific Northwest

ERFaci Constraint using Contoured Frequency by **Optical Depth (CFODD) Analysis**

Beall et al (2024), ACP

New Constraint for ERFaci

- Slope of the CFODD provides and estimate of cloud droplet collection efficiency in single-layer warm liquid clouds.
- Derived from millions of retrievals of cloud optical properties from MODIS and CloudSat global observations.

- E3SMv2 droplet collection efficiencies and ERFaci are highly sensitive to autoconversion.
- E3SMv2 CFODD slope (0.2 ± 0.04) is in agreement with observations (0.2 ± 0.03) . The model represents boundary cloud processes with sufficient skill to make accurate predictions of ACI.

(a) $5 \mu m \le R_e < 12 \mu m$ (b) $12 \mu m \le R_e < 18 \mu m$ (c) $18 \mu m \le R_e < 30 \mu m$

- The EAGLES project has created a suite of observational metrics and diagnostics.
 - ESMAC Diags combining a suite of aircraft, satellite, and ARM data from permanent and mobile sites.
 - Aggregated ARM and satellite datasets and tools to compute adiabaticity and radiative forcing ۲
 - Lagrangian tools to evaluate temporal changes in cloud and aerosol processes.
 - New constraints on ERFaci from A-train satellite sensors.
- These new metrics have been used to diagnose model deficiencies and advance parameterizations necessary for improving E3SM predictions of aerosol and ACI across scales.
 - Polluted clouds have larger droplet concentrations for up to 2-days.
 - E3SM captures N_d-LWP relationship but it is not sensitive to warm-rain experiments.
 - Positive bias simulated in E3SMv1 N_d with respect to observations.
 - Polluted clouds are too thin in E3SM.
 - E3SMv2 appears to have opposite liquid water path Nd relationship to v1.
 - Subadiabatic clouds are highly prevalent compared to observations.