

Uncovering the Interannual Predictability of the 2003 European Summer Heatwave and its Connection to the Tibetan Plateau

September 6, 2024

L. Ruby Leung

Pacific Northwest National Laboratory

PNNL is operated by Battelle for the U.S. Department of Energy

Sources of predictability at different timescales

Pacific

Northwest

(Merryfield et al. 2020 BAMS)

Could soil moisture and temperature provide predictability at interannualto-decadal timescale through longer memory land processes and/or their influence on ocean with **longer memory**?

A weakly coupled land data assimilation system based on 4DEnVar	Experiment	
observational	CTRL	Free run simulatic
innovation \tilde{y}'_{obs} quality control observational background y_b observational background x_b observational operator H model background x_b observational operator H model background x_b observational operator H model background x_b	ASSIM_G and ASSIM	Assimila moisture (ASSIM_ Plateau coupled
soil temperature from GLDAS y_{obs} localization optimal analysis x_a FGOALS /E3SMv2 PI-control run	HCAST_G and HCAST	Initialize states fr perform

- CTRL, ASSIM_G, and ASSIM: 36-year long continuous simulations (1980-2015)
- HCAST_G and HCAST: 5-year long simulations consisting of 10 ensemble members initialized one month apart (April – Jan) and separated by 5 years (1981, 1986, 1991, 1996, 2001, 2006) using restart files from ASSIM_G and ASSIM as initial conditions, respectively

(Shi et al. 2021 Earth's Future; Shi et al. 2024 GMD; Shi et al. in review)

Description

ining fully coupled วท

te monthly mean **soil** e and temperature globally _G) and over Tibetan only (ASSIM) into a fully climate simulation

ed using the coupled model rom ASSIM_G and ASSIM to hindcast simulations

HCAST_G reproduces the observed Rossby wave train and anomalous warming in Europe

Surface temperature and 500 hPa anomalies

NATIONAL LABORATOR

HCAST initialized in 2001 captures the 2003 European summer heatwave Barotropic structure of height anomalies

indicate long-range propagation

Hindcast sensitivity experiments to isolate the sources of predictability Pattern correlation between

Pattern correlation between experiments and observation of surface temperature over Europe in 2003

Experiment	Atmosphere	Land	Ocean	PCC
HCAST	ASSIM	ASSIM	ASSIM	0.82
SNS1	ASSIM	CTRL	ASSIM	-0.21
SNS2	ASSIM	ASSIM only over Tibetan Plateau	ASSIM	0.80
SNS3	CTRL	ASSIM only over Tibetan Plateau	CTRL	0.56
SNS4	CTRL	ASSIM only over Tibetan Plateau	ASSIM	0.65
SNS5	ASSIM	ASSIM only over Tibetan Plateau	CTRL	0.55
SNS6	CTRL	CTRL	ASSIM	-0.41

Impact of land

Impact of ocean

Large differences in snow cover and surface temperature between SNS1 (from CTRL) and SNS2 (from ASSIM) in spring 2003

Reduced snow cover and warmer surface temperature in spring of 2003 when initialized from ASSIM in 2001

Pacific Northwest

Large differences in the SST initial conditions between SNS3 (from CTRL) and SNS4 (from ASSIM) in 2001 that persist in 2003

SST anomalies in January 2003

8

Mechanistic connections: remote influence of land over land and ocean

Pacific

(Shi et al. in review)

Gaps and Opportunities

- Data assimilation can play an important role in hindcast experiments to understand predictability and improve predictions of extreme events
- Data assimilation approaches may have different impacts (e.g., uncoupled or coupled, 3D vs. 4D approaches) – more systematic analysis and comparison with hindcast experiments are needed to understand the impacts of DA
- How land influence atmosphere/ocean locally and remotely to provide predictability of extreme events needs more research
- A model hierarchy can help understand predictability of extreme events
- Extreme events in the extratropics are strongly influenced by atmospheric circulations – storyline simulations that isolate the thermodynamics effects may be insufficient to provide actionable information about future changes in extreme events (probability and intensity)

- Soil moisture and temperature has important effects on interannual-todecadal variability
- Assimilating soil moisture and temperature over the TP alone improves hindcast of the 2003 European summer heatwave in both FGOALS and E3SMv2
 - HCAST initialized from ASSIM in 2001 better predicts anomalies of snow cover (low) and surface temperature (warm) over the TP and North Atlantic SST anomalies (cool), contributing to predictability of the 2003 European heatwave 2 years in advance
 - Initializing hindcasts using the balanced states from ASSIM enhances skill
- DRP-4DVar implemented in FGOALS and E3SM confirmed that DRP-4DVar reduces model drift by assimilating analysis data through fitting them to the trajectory of the coupled model in the one-month assimilation window (He et al. 2017)

Thank you

