Tropical subseasonal convection in E3SM versions 2

and 3m Benedict*

Walter Hannah

Lawrence Livermore National Laboratory Brandon Wolding

Charlotte DeMott

EESM PI meeting

Denver, CO

August 7, 2024

LA-UR # 24-28243

Tropical subseasonal convective variability in E3SM generally improves from v1 \rightarrow v2 \rightarrow v3

• Distribution of (normalized, symmetric) precipitation spectral power improves for key wave types:

• Changes to the deep convective scheme result in more realistic...

Science

... convection-circulation coupling

NCAR

- ... convection-radiation feedbacks for light and heavy (but not "moderate") rain rates (only v1 → v2 assessed so far)
- MJO in v2 has a larger (improved) amplitude, more realistic MJO-extratropical teleconnections
- Increased signal-to-noise ratio in v3 is attributed to new representations of cloud microphysics (within deep convection) and

mesoscale cloud scheme that improve feedbacks among moisture, clouds, circulation, and radiation

Lingering biases across E3SM development cycles

• Distribution of (non-normalized, symmetric) precipitation spectral power shows reduced magnitudes across scales:

- Tropical convection-related biases observed in v2 :
 - Underestimated precipitation variability at ~all space-time scales (also verified for v3)
 - Continuation of "too light-too frequent" precipitation behavior
 - Underestimated precipitation diurnal cycle <u>amplitude</u> in Indo-Pacific region (diurnal phase is much improved) also verified for v3
 - Incorrect precipitation-radiation feedbacks: too weak for light rain rates, too strong for moderate-heavy rain rates
 - Underestimated coherence of MJO eastward propagation signal

• Low patt representation of M Office of atropical connections, particularly when MJO deep convection exists over Indonesia