Scenario Discovery for Probabilistic Ensembles of a Coupled Human-Earth System Model

Jen Morris

and Kenny Cox

MIT Joint Program on the Science and Policy of Global Change

August 8, 2024

Office of Science Earth and Environmental System Modeling

Coupled Human-Earth System Models

- Used to explore potential future outcomes for emissions, economics, energy, land, water, climate, etc.
- Uncertainty is often represented through sensitivity analysis, scenarios and model comparisons, which do not provide a probabilistic interpretation
- We take a probabilistic approach to uncertainty, creating probabilistic integrated socio-economic and climate projections

MIT Integrated Global System Modeling (IGSM) Framework

Uncertainty Quantification via Traditional Monte Carlo Approach

- Probability distributions for socio-economic & climate input parameters are developed & sampled
- Simulated through MIT integrated models to explore a range of possible future outcomes
- For a set of ensemble scenarios with different long-term temperature targets

Distributions of Key Results

Morris et al. (2022)

Probabilistic Ensembles

Approach more fully and systematically explores uncertainty space compared to limited number of scenarios and provides insight about likelihood of outcomes

BUT, some challenges:

1) Produces a lot of data- difficult to explore and extract insights

2) Distributions of each outcome are separately characterized and so relationships that may exist over time or among outcomes are lost

Scenario discovery can address these issues

Scenario Discovery

 Tools for screening databases of model simulations to identify outcomes of interest and their conditions for occurring

Input-Output Mapping

Scenario Discovery Visualization Tool

Interactive Web-Based Platform to:

- Visualize results of ensembles
- Elucidate how different outcomes and inputs are related
- Identify individual scenarios of interest for particular studies

Steps:

- Create database of large ensembles of model scenarios
- Create flexible web-based platform that calls from database and allows users to visualize results and relationships among selected variables

scenariodiscovery.mit.edu

Tool enables quick exploration and analysis of:

- distributions of model outputs
- input distributions driving ensembles
- relationships between inputs and outputs, and how they change over time, across regions and scenarios
- relationships between different outputs and potential tradeoffs
- output patterns over time and their drivers
- geographic maps of outputs

http://globalchange.mit.edu/

Input-Output mapping: Identifies key drivers of outcome of interest

GLOBAL CHANGE

2C Scenario in 2050

2C Feature Importance Scores

Times series clustering: Identifies dynamics missed by looking at individual years, and main drivers of each cluster

Comprehensive assessment of how key drivers vary by region, time and scenario

Output-Output mapping: Identifies relationships and tradeoffs across outputs

Global: 2C Scenario in 2100

Output-Output mapping: Identifies relationships and tradeoffs across outputs

Connecting to the STRESS Platform

GLOBAL CHANGE

Benefits of Approach

- Ability to explore full range of outcomes with associated likelihoods while also maintaining intact individual scenarios
- Explore if there are prevailing storylines behind outcomes of interest
- Identify individual scenarios that are defined by specific combinations of outcomes to further explore... look at tradeoffs
- Develop smaller sets of scenarios that include a wide variety of possible futures and/or span a range of particular outcomes of interest... to use in finer scale models
- Help avoid potential biases in perceptions of what "needs" to happen to achieve certain outcomes

Challenges

• Scale!

Model Connections & Feedbacks

- Dynamics and Metrics
- Deep Uncertainties

Thank you!

Jennifer Morris, MIT

holak@mit.edu