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Low-Likelihood, High-Impact Heatwaves Q@CASCADE
Extreme heatwaves set temperature records 3+ standard deviations beyond the
mean of annually hottest daily maximum temperatures.
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Forecasts from SFNO Q@CASCADE

Characterizing these extreme statistics and drivers requires large sample sizes.

SFNO is a machine learning emulator used for weather prediction. It is ~3 orders of
magnitude faster than its numerical counterparts.
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Designing ML Ensemble Weather Forecasts

QCA
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1. Perturb the initial conditions with
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Diagnostics Pipeline: Ensemble Mean RMSE QCASCADE
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The root-mean squared error (RMSE) is shown for the SFNO ensemble and IFS, the
operational ensemble weather forecasting model at ECMWF.
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Diagnostics Pipeline: Extreme Forecast Index QCASCADE
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The Extreme Forecast Index is the basis for ECMWF’s Supplemental Score on Extremes.
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This score is a unitless quantity that indicates how extreme a given forecast is. From -1
(anomalously cold) to 1 (anomalously hot), it measures the distance between a given
forecast and the model climatology.
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Construction of Huge Ensembles (HENS) Q@CASCADE

HENS consists of 29 * 256 = [,424 ensemble members and 28,050 years of simulation.
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Demo of Huge Ensembles QCASCADE

On August 23, 2023, Kansas City had an 300 ;
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Demo of Huge Ensembles QCASCADE
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Demo of Huge Ensembles QCASCADE

On August 23, 2023, Kansas City had an 300
extreme heatwave, with 95 °F air
temperature, 56% relative humidity, and a 295 -
heat index of 109 °F. o
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Information Gain from Huge Ensembles

CALIBRATED & SYSTEMATIC CHARACTERIZATION, ATTRIBUTION, & DETECTION OF EXTREMES

The gain is the maximum number of standard
deviations away from the ensemble mean that
can be sampled by the ensemble.

G, =

max

i=1,....,n

where X; Is an ensemble member, S, is the
ensemble standard deviation, and X, is the
ensemble mean.

HENS is large enough to have at least one
member that is 4 standard deviations away
from the ensemble mean.
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Information Gain from Huge Ensembles

The information gain at each grid cell is shown below, for huge ensembles and traditional
ensemble sizes.

Huge Ensemble Gain 50-member Ensemble Gain

w H w (o)} ~ o0}
Gain (unitless)

N

~

" BERKELEY LAB {2) ENERGY



N
rhank you! QCASCADE

Huge Ensembles Part I: Huge Ensembles Part Il:
https://arxiv.org/abs/2408.03100 https://www.arxiv.org/abs/2408.01581
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Characterizing the Huge Ensemble
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Validation 4: Distance between Ensemble & Climatology @ CASCADE
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Extreme Forecast Index in FourCastNet QCASCADE

The Washington Post @

1.0 The punishing, historic cold invading the
0.9 Northeast, in five maps

The coldest wind chills in more than 50 years — minus-50 or lower — are forecast in northern New England on Friday
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Extreme Forecast Index in SENO QCASCADE

Maine: Comparing Ens Prediction to MClimate
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