Funding: RGMA Program

Diagnosing Mesoscale Convective Systems in **DYAMOND** Models: **A Feature Tracking** Intercomparison

Zhe Feng

A. Prein, J. Kukulies, T. Fiolleau, W. Jones, Z. Moon, B. Maybee, Z. Moon, K. Nunez Ocasio, W. Dong, M. Molina, M.G. Albright, R. Feng, F. Song, J. Song, R. Leung, A. Varble, C. Klein, R. Roca

> **EESM PI Meeting** August 6, 2024

PNNL is operated by Battelle for the U.S. Department of Energy

Motivation

- Mesoscale convective systems (MCS) produce most of the tropical precipitation (Nesbitt et al. 2006; Feng et al. 2021)
- MCS disproportionally contribute to extreme precipitation (Roca and T. Fiolleau 2020)
- Typical global models cannot simulate MCS, convection-permitting (**km-scale**) models (**CPM**) offer new opportunities to examine how MCSs and extreme precipitation may change in future **climate** (Prein et al. 2017; 2023)

MCS lifetime > 12 h accounts for ~80% extreme MCS rainfall 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

MCSMIP (MCS tracking method intercomparison)

 Substantial differences in the simulated characteristics of deep convection among models (Feng et al. 2023 GRL)

Science Questions:

- How sensitive are the DYAMOND simulated MCS characteristics to different tracker formulations?
- What km-scale model biases are robust among trackers and how do the biases relate to environmental moisture?

Approach

 Evaluate model MCS characteristics from eight different MCS trackers

Models overestimate sensitivity of tropical precipitation to moisture

- Both phases have large inter-model spread in **PW** and **precipitation**
- Most models overestimate precipitation/PW ratio by up to 33%, suggesting models may have higher sensitivity to moisture than OBS

Models underestimate MCS precipitation amount

- Models generally underestimate MCS precipitation over tropical ocean by 32%
- Biases over tropical land are slightly smaller 14%

	-40%	-45%	-36%	-32%	-43%	-30%	-40%	14		- 100	
	-23%	-31%	-30%	-26%	-39%	-19%	-26%			- 80	
	-62%	-82%	-53%	-42%	-52%	-47%	-91%			60	
	-52%	-47%	-41%	-47%	-46%	-43%	-47%			- 60	(%)
	-29%	-32%	-25%	-12%	-36%	-16%	-20%			- 40	JCe
	-65%	-67%	-53%	-56%	-56%	-51%	-58%			- 20	ferei
	-87%	-82%	- 65%	-61%	-65%	-59%	-70%			- –20	Diff
	-20%	-44%	-11%	-17%	-19%	-19%	-23%			40	ative
	-50%	-64%	-48%	-39%	-53%	-37%	-48%			10	Rela
	20%	33%	-18%	14%	-37%	10%	11%			- –60	
	-28%	-28%	-21%	-32%	-29%	-26%	-34%			80	
	-41%	-49%	-34%	-31%	-36%	-27%	-38%			- -1 00	
AP) CAN (JOBAC) TNIS) TRACK O (DL) (TNAO)											

Biases in MCS precipitation characteristics are more consistent among trackers than clouds

*Composite from MCSs with median lifetime value of each tracker

*Exclude tracks with max CCS area during first & last 10% of their lifetime (split or merge)

Models underestimate stratiform rain contribution to **MCS** precipitation

- Most models underestimate stratiform rain (< 5 mm/h) contribution to MCS rainfall compared to both IMERG & DPR, vice versa for convective rain contribution (> 10 mm/h)
- Biases are larger over land than ocean

Models overestimate sensitivity of **MCS** precipitation intensity to moisture

- Most models show **higher MCS** precipitation intensity sensitivity to PW than ERA5
- After rescaling PW, some biases at high PW remain, but precipitation pick-up near critical PW compares better

Discussions

• Grand challenges:

- How well do km-scale models simulate key processes controlling organized convection & precipitation? How do we evaluate them?
- Gaps:
 - Coordination between model development and process-oriented analysis, and better use of collocated observations to improve model diagnostics
 - Huge data volume hinders analysis

Opportunities

- Community effort to build model testbeds, collect and format all available observations and standardize model outputs to facilitate analysis
- Hackathon on global km-scale model analysis

Thank you

Contact: Zhe Feng (<u>zhe.feng@pnnl.gov</u>)

PNNL is operated by Battelle for the U.S. Department of Energy

