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Executive Summary 
Our ability to predict when, where, and how much 
precipitation will fall is critical for decision making and 
responding to the impacts of extreme rainfall across a wide 
range of sectors and timescales. The current generation of 
Earth system models (ESMs), however, have large and 
persistent systematic errors that severely limit the ability  
to faithfully reproduce the many spatial and temporal 
scales of precipitation variability.

The NOAA-DOE Precipitation Predictability and Processes 
Workshop was held virtually during November 30−
December 2, 2020. In partnership with the U.S. Global 
Change Research Program (USGCRP) and U.S. Climate 
Variability and Predictability (US CLIVAR), the workshop 
was attended by participants from the observational and 
modeling research communities as well as operational centers 
to address the challenge of precipitation predictability. 
More specifically, the workshop focused on precipitation 
predictability and physical processes for the contiguous  
U.S. with an emphasis on sub seasonal to multi-decadal 
timescales. Essentially, the workshop asked how we can 
improve our ability to predict precipitation variability 
and extremes.

The workshop was organized into four sessions that 
focused on 1) sources and limits of predictability; 2) key 
processes critical to precipitation biases; 3) interdisciplinary 
processes; and 4) regional precipitation. Each session 
included keynote presentations and panel remarks and 
discussions that provided succinct reviews of current 
knowledge and gaps and highlighted research and 
operational needs concerning precipitation predictability  
and physical processes. The workshop addressed the 
following thematic questions:

1. What are the sources of predictability that have the 
biggest influences on precipitation at weather, sub-
seasonal-to-seasonal (S2S), and multi-decadal timescales, 
including extremes?

2. What are the key physical processes that have the 
strongest imprint on the model biases and precipitation 
predictions and projections?

3. How can we most effectively take advantage of existing 
observations and data (satellite and in situ) to advance 
process-level understanding of the key processes 
and predictability?

4. What are the gaps and needs for targeted observations 
and process studies to improve understanding and model 
representations of those key processes?

5. How do we benefit from national and international 
collaboration to make significant progress?

This workshop report is organized by discussion themes, 
followed by a section that highlights the key findings of 
the thematic questions. This executive summary provides  
a high-level synthesis of the discussion and findings of the 
“Sources of Predictability Influence Precipitation,” “Physical 
Processes Representation and Biases,” and forward-looking 
“Modeling and Observational Strategies.”

Sources of Predictability  
Influence Precipitation

To accurately capture the multi-scale nature of precipitation 
in ESMs, emphasis should be on understanding and accurately 
representing large-scale atmospheric variability that modulates 
or forces regional precipitation, and, importantly, the feedbacks 
(e.g., local land-atmosphere interactions, remote ocean-
atmosphere interactions) and processes that ultimately 
determine the interplay between regional rainfall and large-
scale atmospheric variability.

Large-scale variability: Large-scale variability ranging from 
the Madden-Julian Oscillation (MJO) and North Atlantic 
Oscillation (NAO) at sub-seasonal scales through El Niño-
Southern Oscillation (ENSO) at interannual scales and 
Atlantic Multidecadal Variability (AMV) and Pacific 
Decadal Oscillation (PDO) at decadal time scales can 
modulate regional precipitation through influence on 
large-scale atmospheric variability. This low-frequency 
variability (i.e., MJO, NAO, ENSO, AMV, PDO) and its 
predictability at different timescales provides an opportunity 
to predict regional precipitation. Nevertheless, significant 
challenges remain in exploiting this predictability in terms 
of understanding how, where, and when this low-frequency 
variability affects regional precipitation.

Slowly Varying Processes: Other processes that impact 
precipitation predictability include slowly varying surface-
atmosphere interactions associated with memory of sea 
surface temperature, soil moisture, vegetation, and sea- 
ice that may influence precipitation locally, or remotely 
through teleconnections.
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Phenomena: Extreme precipitation is associated with 
phenomena such as tropical cyclones, atmospheric rivers, 
extratropical cyclones, mesoscale convective systems, and 
lake-effect snowfall. Models should strive for a better 
representation of all of these weather phenomena and  
the large-scale environments that drive them.

Physical Processes Representation  
and Biases

To improve the simulation and prediction of precipitation in 
ESMs, an improved understanding of processes and process 
interactions critical to precipitation will be needed. Significantly, 
model biases and drifts in models also limit the ability to predict 
precipitation accurately and need to be reduced.

Process representation: Precipitation is influenced by local 
processes such as surface-air interactions, stratosphere-
troposphere interactions, terrestrial ecosystem processes, 
aerosol-cloud interactions, and remote processes such as 
tropically forced teleconnections. Improving representation 
of multi-scale processes from cloud microphysics through 
regional-to-global circulation is required.

Biases: Inadequate representation of atmospheric processes 
and their interactions with land, ocean, and the cryosphere 
in coupled models can lead to systematic biases in the mean 
and variable precipitation. There is a need for a systematic 
characterization of sources and causes of model biases that 
have the greatest impact on precipitation prediction, which 
may be facilitated by the use of a hierarchy of models  
and modeling experiments designed to elucidate critical 
processes and feedbacks.

Modeling and Observational  
Strategies

Several modeling and observational strategies were highlighted 
as ways to make progress in reducing precipitation biases and 
improving precipitation simulations and predictions.

High-resolution modeling: Resolving multi-scale processes is 
critical to realizing the potential predictability of precipitation. 
With increasing computational power and exascale computing 
on the horizon, high-resolution modeling can bypass the need 
of certain parameterizations that are often the source of errors 
and biases. For example, global storm-resolving models 
(GSRMs) with horizontal resolution of 2-5 km and vertical 
resolution of ~200m can explicitly resolve deep convection 
above the boundary layer, bypassing the need for cumulus 

parameterizations. For the underlying boundary layer, 
resolutions higher than 200m may be necessary. The use  
of higher-resolution models has the potential to reduce the 
gap between weather and climate scales towards a unified 
modeling framework. Variable resolution modeling for both 
the horizontal and vertical scales was also highlighted as a 
computationally efficient method for achieving higher 
resolution in specific regions of interest.

Hierarchical modeling: A modeling framework featuring 
models of different levels of complexity can provide a more 
direct link between ESMs and observational data. For example, 
process-level models, such as large-eddy simulation (LES), 
can provide guidance on parameterization development. This 
helps to identify and improve physical process representations 
that are key to reducing precipitation biases.

Phenomena-based model evaluation: Nudged simulations, 
initialized hindcasts, and/or more sophisticated coupled 
data assimilation methodologies have the potential to 
provide useful experimental frameworks for evaluating 
simulations of precipitation and attributing precipitation 
biases to biases within local-scale features that extend to 
larger-scale atmospheric variability.

Community modeling infrastructure: Development of 
community modeling frameworks and infrastructures, such 
as the Unified Forecast System (UFS) and Community 
Earth System Model (CESM), can facilitate and sustain 
integration of community efforts in ESM development, 
accelerate the transition from research to operations, and 
yield results in which the whole is greater than the sum  
of the parts. While of critical importance, accelerating the 
transition of research to operations, however, requires 
significant resource investment as well as commitment and 
flexibility in both research and operations communities.

Targeted and enhanced in situ and satellite observations: 
Sustained and enhanced observations are needed to 
document the complexity of precipitation (e.g., type, 
duration, composition) that can be used to determine 
model biases and deficiencies, constrain model representation, 
adequately describe coupled interactions with land, ocean, 
ice, and aerosols, and inform new parameterizations.

Observational-model integration: Integrated field 
observations such as those from DOE’s Atmospheric 
Radiation Measurement (ARM) user facility and other 
observational field campaigns are extremely useful for 
process-level studies, such as understanding key physical 
processes critical to precipitation, guiding physical 
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parameterization developments, or testing modeling 
assumptions with process models for specific cases or 
through statistical studies. Process studies that integrate  
or assimilate data from observational field campaigns into 
models will enable better depiction of precipitation and 
associated extreme weather phenomena and processes.

Collaborations between modeling and observational teams: 
Developing databases of events and their global properties/
precursors are needed to design and further develop 
modeling capabilities, form hypotheses, and test theories. 
Easy-to-access, documented, and centralized data archives 
from field campaigns are essential to facilitate collaborations 
between observational and modeling teams and accelerate 
progress. Standardizing formatting and data quality control 
across experiments would aid model-observation team 
efforts. How to effectively coordinate model development, 
process-level studies, and prediction and predictability 
research requires attention.

Machine learning: Machine learning and artificial intelligence 
(ML/AI) offer the possibility to improve analysis and reduce 
model biases. For example, ML/AI may be used to design 
and develop new data assimilation methodologies and new 
stochastic parameterizations for improving the simulation of 
natural variability. The value of machine learning in empirical 

bias correction, post-processing, improving parameterizations, 
accelerating computations, and development of surrogate 
stochastic models for prediction and predictability studies 
is recognized.

Interagency Coordination of Science and 
Connecting to Services

Collaboration across individual agency program investments 
in observing, understanding, and modeling precipitation 
process representations for improved predictability can continue 
to be fostered through the interagency groups of the USGCRP 
and the US CLIVAR. The newly formed Interagency Council 
for Advancing Meteorological Services (ICAMS) also offers 
the possibility for coordination to accelerate the transition 
of innovative research into operational predictions.

Stakeholder Engagement

Finally, the workshop emphasized the importance of 
communication among predictability researchers, operational 
personnel, and end users. Workshop participants considered  
it critical to identify which variables, at what temporal and 
spatial scales, lead times, and confidence levels, are of most 
practical value for specific applications.

Summarizing thematic questions and key findings from the NOAA-DOE Precipitation Process Predictability Workshop. 

How do we benefit from national  
and international collaboration  
to make significant progress?

What are the gaps and needs for  
targeted observations and process studies  

to improve understanding and model  
representations of those key processes?

What are the key physical 
 processes that have the strongest  
imprint on the model biases and  

precipitation predictions and projections?

How can we most effectively take  
advantage of existing observations  

and data (satellite and in-situ) to  
advance process-level understanding  

of the key processes and predictability?

What are the sources of  
predictability that have the biggest 

influences on precipitation at weather, 
subseasonal-to-seasonal to multi- 

decadal timescales, including extremes?

Sources of Predictability  
Influencing Precipitation

 f Large-scale variability (e.g.,  
MJO, NAO, ENSO, AMV, PDO)

 f Slowly varying processes (e.g. 
SST, soil moisture, vegetation, 
sea ice)

 f Phenomena (e.g., cyclones, 
atmospheric rivers, mesoscale 
convective systems)

Physical Processes  
Representation and Biases

 f Improving representation of local 
(e.g. aerosol-cloud interactions) 
and remote (e.g. tropical diabatic  
heating) processes

 f Systematic characterization  
of model biases

Modeling and  
Observational Strategies

 f Global storm resolving models
 f Hierarchical modeling
 f Phenomena-based model  
evaluation

 f Community modeling  
infrastructure

 f Enhance model observation 
integration

 f More observations to constrain 
models

 f Collaboration between modeling 
and observation teams

 f ML/AI

NOAA-DOE Precipitation Processes and Predictability Workshop Thematic Questions and Key Findings

SESSION 1
Sources and limits  

of predictability

SESSION 3
Interdisciplinary  

processes

SESSION 2
Key processes critical  
to precipitation biases

SESSION 4
Regional  

precipitation

Stakeholder Engagement and Interagency Collaboration

Q1

Q2

Q3

Q4

Q5
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Workshop Introduction and Motivations
Weather and climate precipitation extremes (e.g., flood  
and droughts) have large societal impacts. A key to reducing 
these impacts is to be able to anticipate when, where, and 
how much precipitation will fall. Although models have  
a good track record of predicting global and regional 
temperature, precipitation related fields are not captured as 
well. The challenges in forecasting precipitation have been 
acknowledged by the U.S. Congress and the Executive Office 
of the President with several established mandates, including 
the 2017 Weather Act, the 2021 Earth System priority at the 
Office of Science and Technology Policy (OSTP) involving 
the water cycle, and the newly formed Interagency Council 
for Advancing Meteorological Services (ICAMS).

The National Oceanic and Atmospheric Administration 
(NOAA) has recently launched the Precipitation Prediction 
Grand Challenge (PPGC) Initiative to help further align 
research efforts across NOAA in the coming years. The U.S. 
Department of Energy (DOE) Earth and Environmental 
Systems Sciences Division (EESD) has both a broad interest 
in water cycle predictability—the 2018 EESD strategic 
plan identifies Integrated Water Cycle as one of its 5 grand 
challenges—as well a focused interest in precipitation 
processes in the context of Earth system predictability  
and extreme events.

To accelerate progress in addressing precipitation biases and 
improving precipitation simulations and predictions across  
a broader set of timescales, it is important to understand the 
current limits of predictability and highlight opportunities 
for extending the predictability limits.

To this end, NOAA and DOE, in partnership with the U.S. 
Global Change Research Program (USGCRP) and U.S. 
Climate Variability and Predictability Program (US CLIVAR), 
jointly organized a community workshop focused on advancing 
understanding of precipitation predictability and processes and 
exploring ways to reduce precipitation biases. The workshop 
scope considered precipitation processes and predictability over 
the contiguous U.S. in the context of global models, with a 
focus on sub-seasonal to multi-decadal timescales.

The workshop brought together the observational and 
modeling research communities as well as operational 
centers to address the following thematic questions:

1. What are the sources of predictability that have the 
biggest influences on precipitation at weather, sub-
seasonal-to-seasonal (S2S), and multi-decadal timescales, 
including extremes?

2. What are the key physical processes that have the strongest 
imprint on the model biases and precipitation predictions 
and projections?Figure 1. NOAA Precipitation Prediction Grand Challenge (PPGC) 

Strategic Objectives.

Figure 2. Spatial and temporal characteristics of atmospheric  
processes and features relevant to precipitation. (Source: 2019 
Benchmarking Simulated Precipitation in Earth System Models 
Workshop Report)
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3. How can we most effectively take advantage of existing 
observations and data (satellite and in situ) to advance 
process-level understanding of the key processes 
and predictability?

4. What are the gaps and needs for targeted observations 
and process studies to improve understanding and model 
representations of those key processes?

5. How do we benefit from national and international 
collaboration to make significant progress?

The report is organized as follows. First, the workshop 
sessions are summarized in the context of the thematic 
questions. Four sessions were held: 1) sources and limits  
of predictability; 2) key processes critical to precipitation 
biases; 3) interdisciplinary processes; and 4) regional 
precipitation. Interagency and agency program perspectives 
are provided in the next section, followed by a final section 
that synthesizes the key findings to the thematic questions  
of the workshop. 
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Workshop Themes
SESSION 1: Limits And Sources  
Of Predictability
The Limits and Sources of Predictability Session was 
motivated by enhancing understanding of predictability 
limits and identifying strategies for realizing these limits  
to increase prediction skill in variables that meet user needs. 
Figure 3 shows a schematic of the theme of the session. The 
session was split into two parts, with the first half featuring a 
keynote from Kristian Strommen (Oxford University), and 
panel remarks from Andrew Robertson (Columbia University/ 
IRI), Frederic Vitart (ECMWF), Meghan Cronin (NOAA/
PMEL), and Stephanie Henderson (University of Wisconsin). 
The second half of the session featured keynote speaker 
Kathy Pegion (George Mason University) and panelists 
Aneesh Subramanian (University of Colorado), Ruby Leung 
(DOE/PNNL), Tom Delworth (NOAA/GFDL), and Russ 
Schumacher (Colorado State University).

While significant progress has been made in understanding 
the various sources of predictability noted above, substantial 
challenges remain in terms of understanding their associated 
limits of predictability, their connection to regional precipitation, 
and how well their underlying mechanisms are represented 
in current Earth system models (ESMs). Indeed, there is much 
research to be done on how to capitalize on and exploit these 
various sources of variability—this exploitation is commonly 
viewed as forecasts of opportunity. To understand forecasts of 
opportunity, suppose we have an accurate forecast for where 
and when the MJO is in the active phase (i.e., enhanced 
rainfall in a particular region): We then have the opportunity 
to make a more skillful forecast of precipitation. The 
challenge is then to predict the phases of the MJO and then 
how they affect precipitation. More generally, representing 
the various sources of S2S predictability and their interactions 
(e.g., ENSO, MJO, QBO, Sudden Stratospheric Warmings 
[SSWs]) in models has been known to be critical (Merryfield 
et al. 2020), but ESMs still struggle to accurately capture the 
associated rainfall variability and even the various sources of 
predictability. For example, capturing the tropical diabatic 
heating processes associated with, say, the MJO or ENSO 
modifies mid latitude circulation and regional precipitation, 
and yet ESMs still struggle to capture these processes with 
sufficient accuracy.

Figure 3. Schematic representing the general concept of predict-
ability, including understanding predictability limits and strategies 
for realizing them as prediction skills that meet user needs. Sizes 
of bubbles can vary based on timescales and spatial scales of 
the issues of interest. (Courtesy of Kathy Pegion)

Figure 4. Schematic depiction of (bottom) temporal ranges and 
(top) sources of predictability for weather and climate prediction. 
From Merryfield, William J., et al. “Current and emerging develop-
ments in sub-seasonal to decadal prediction.” Bulletin of the 
American Meteorological Society 101.6 (2020): E869-E896.  
© American Meteorological Society. Used with permission.

Potential sources and limits of predictability

To discuss potential sources and limits of predictability, one 
must consider the scales of interest. For timescales of several 
weeks, it has been well known that the Madden-Julian 
Oscillation (MJO) is an important source of predictability 
while the El Niño-Southern Oscillation (ENSO), North 
Atlantic Oscillation (NAO), and Quasi-Biennial Oscillation 
(QBO) provide predictability at seasonal and interannual scales. 
At multi-decadal scales air-sea interactions over the extratropical 
oceans are the main potential sources of predictability.

Unpredictable

User Needs
Current 

Skill

Predictable
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Another significant source of precipitation predictability  
is that many surface components of the Earth system have 
variability on much longer time scales than the atmosphere. 
Surface-atmosphere interactions such as heat and moisture 
exchanges that are influenced by this “memory” or “persistence” 
in sea surface temperature (SST), soil moisture, vegetation, 
and sea-ice may contribute to precipitation locally or remotely 
through teleconnections.

In addition to the sources of rainfall predictability discussed 
above, recent research points to the importance of regime 
dynamics as a potential source of precipitation predictability. 
In this context regime dynamics is due to non-linear interactions 
between atmospheric transient eddies (e.g., weather) and the 
mean flow. These interactions can lead to regimes or quasi-
persistent atmospheric states that then become potential 
sources of regional precipitation predictability. For example, 
the European Centre for Medium-Range Weather Forecasts 
(ECMWF) model skill at predicting the winter NAO is 
primarily attributed to its ability to capture interannual 
variations in the latitude of the eddy-driven jet stream. 
However, accurately capturing eddy-mean flow interactions 
remains a challenge such that many models often fail to 
forecast these regimes beyond two weeks’ lead.

Local processes also impact precipitation predictability. These 
include local land-surface feedbacks (e.g., soil moisture; 
vegetation feedbacks) and associated circulation changes 
(Teng et al. 2019), and aerosol cloud interactions.

The role of technology (ML/AI, high- 
performance computing, and observations)

Numerous new and emerging technical capabilities offer the 
potential to make game-changing advances to the science of 
predictability and prediction. For example, a leap to exascale 
computers will not only allow the design and deployment of 
ultra-high-resolution models but also allows larger numbers 
of ensembles to quantify natural variability. Machine learning 
and artificial intelligence (ML/AI) are also expected to improve 
analysis and correction of model biases, as well as lead to 
new data assimilation methodologies and new stochastic 
parameterizations for use in scale-aware models. Advances in 
satellite observations and autonomous platforms for in situ 
measurements of the structure of the atmospheric boundary 
layer and ocean mixed layer over the open ocean are expected 
to revolutionize model initialization through coupled data- 
assimilation, which would likely improve initialization accuracy 
and reduce initialization shock, thus leading to improved 

precipitation forecasting capabilities. (See Session 3 for 
additional discussion of the ocean-atmosphere boundary.)

Integration activities

How to effectively coordinate model development, process-
level studies, and prediction and predictability research 
requires attention. More effective collaboration across the 
weather and climate communities and improved engagement 
of forecast users are needed. Specifically, there are concerns 
that too many sub-critical modeling efforts on a wide range of 
topics may impede progress compared to larger, collaborative 
efforts focused on a few critical areas. The impressive model 
improvements over the last 10 to 20 years such as improvements 
in ENSO variability and Arctic sea-ice processes are examples 
where sustained integrated community efforts can yield results 
in which the whole is greater than the sum of the parts. 
Prediction of some important sources of S2S predictability, 
such as MJO (Kim et al. 2018), has improved significantly 
over the past decade thanks to decades of coordinated effort 
and investment (Figure 5).

Figure 5. (Left) MJO and (Right) North American precipitation 
forecast skill trend in ECMWF forecast system.
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These successes could be repeated for the prediction of 
precipitation through integration, a focus on key processes, 
and exploiting new technology and methods.

Promising areas of opportunity for progress 
in precipitation predictability research

1. Processes:
a. Local feedbacks as potential sources of predictability: 

Land- and ocean-surface feedbacks are known sources 
of predictability, yet the process representations for 
these will require further improvements. Specifically, 
memory of soil moisture as a potential source of 
predictability needs to be examined further, and 
feedbacks related to sea-ice coverage are another 
source of predictability at shorter timescales.

b. Diabatic heating as source of predictability: The 
value of tropical variability (e.g., MJO and ENSO)  
in predictability is well recognized. The potential 
generalizability to other forms of heating signals, such  
as those associated with extra-tropical and Arctic SST 
anomalies and in frontal areas, as potential sources of 
predictability need to be examined. The diabatic 
heating over large tropical rainforest areas, and their 
interplay with major tropical deep convection centers, 
needs attention.

2. Modeling:
a. Resolving multi-scale processes: Resolving multi-scale 

processes is critical to realizing potential predictability 
of precipitation. Continued effort in improving physical 
processes in high-resolution models and improving their 
computational efficiency to expand their application 
from weather prediction to S2S and beyond is needed.

b. Unified or seamless modeling: Unified modeling of 
weather and climate, based on a combination of high- 
resolution regional and global modeling, has great 
potential for fully realizing potential predictability, 
particularly at S2S scales due to its ability to better 
resolve multi-scale processes.

c. Machine learning for a range of applications: The 
potential value of machine learning in empirical bias 
correction, post-processing, improving parameterization, 
accelerating computations, and development of surrogate 
stochastic models for prediction and predictability 
studies was recognized as an area that requires 
additional focused research.

3. Diagnostics and Predictability:
a. Large-scale weather regime-based approach: Predictability 

depends on the weather/climate regime in complex ways 
that deserve systematic examination. In the meantime, 
progress can be made through identifying and exploiting 
windows of opportunity for prediction that arise from 
this regime dependence.

b. Systematic investigations of impacts of model biases: 
Examination of the relationship between predictability 
estimate and biases in models is needed. Indeed, biases 
that have the greatest impact on prediction and 
predictability estimates need to be identified so  
that efforts to reduce these biases can be prioritized.

c. Research in air-sea and air-land coupling and 
precipitation processes and their impacts on 
prediction and predictability: Continued basic 
research on air-sea and air-land interactions and the 
three-dimensional (3D) structure of moisture and 
precipitation, with increased focus on reducing model 
biases and uncertainties that arise from initialization 
and observation errors as well as from representation  
of boundary-layer and cloud processes, is required. 
Exploiting advances in remote-sensing and autonomous 
in situ measurements of the atmospheric boundary 
layer and ocean mixed layer can lead to improved 
initialization and coupled data-assimilation.

4. End-to-End Systems:
a. Stakeholders/users engagement: Communication 

among predictability researchers, operational personnel, 
and end users is critical to identify which variables,  
at which temporal and spatial scales, lead time, and 
confidence level, are of most practical value for 
specific applications.

b. Integration: While each of the items listed above has 
value, even more significant progress can be made 
through their integration. Specifically, integration  
of the observational and modeling process-level  
studies, predictability and prediction experiments, 
machine learning and computational development 
activities, and stakeholder engagements can be 
implemented as community activities. The successes  
of S2S (Mariotti et al. 2019) and other efforts are 
encouraging examples of potential progress that  
can be made through large multi-agency national  
and international integrated efforts.
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SESSION 2: Key Processes Critical 
to Precipitation Biases
This session discussed key processes relevant to precipitation 
in observations and ESMs and identified the deficiencies and 
missing physics in current models, to gain insights for further 
improving the prediction and simulations. The keynote was 
from Chris Bretherton (University of Washington), featuring 
panel remarks from Shaocheng Xie (DOE/LLNL), Ming 
Zhao (NOAA/ GFDL), Steve Nesbitt (University of Illinois 
Urbana-Champaign), and Courtney Schumacher (Texas 
A&M University).

Leading source of model precipitation  
biases over the U.S.

The spatial resolutions of contemporary weather forecast 
models are generally around 10 km, and climate models are 
generally run with resolutions of 25-100 km. For all models, 
sub-grid scale processes, such as convection, turbulence or 
microphysics, cannot be resolved directly and must be 
parameterized. However, many precipitation biases are 
associated with inadequate representation of these processes  
in the models. Over the U.S., mesoscale convective systems 
(MCS) are one of the leading phenomena that many global 
climate and weather forecast models struggle with. MCSs 
contribute more than 50% of warm season precipitation over 
the Great Plains and more than 40% of cold season precipitation 
over the southeast U.S. (Jiang et al. 2006, Feng et al. 2019). 
Models generally underestimate the mean precipitation over 
the Great Plains, mostly associated with MCSs during the 
warm season. The diurnal cycle of precipitation in the models 
tends to peak early compared to observations and miss the 
secondary nocturnal peak associated with the MCSs.

Other major sources of precipitation biases include the 
representation of atmospheric rivers and tropical cyclones as 
well as the extreme events associated with them. At 50 km, 
ESMs can capture some gross features of these phenomena, 
but they still struggle with simulating their life cycle, intensity, 
and rainfall types (convective and stratiform).

Modeling strategies

A hierarchical model approach (i.e., a modeling framework 
with different levels of complexities) can provide a direct 
link between ESMs and observational data (Figure 6). For 
example, process-level models, like large-eddy simulation (LES), 

can provide guidance on parameterization development. 
This helps to identify and improve physical processes that 
are key to precipitation biases at the process level.

Another strategy to connect observations and models is 
phenomena-based model evaluation in which models are 
explicitly evaluated on their ability to reproduce observed 
phenomena such as atmospheric rivers or specific cloud 
regimes (Zhao 2020, Ma et al. 2021). Nudged model 
simulations (Zhang et al. 2014), realistically initialized 
hindcasts (Phillips et al. 2004, Williams et al. 2013), or 
coupled data assimilations can be useful tools to elucidate 
process behavior relevant to these phenomena.

With increasing computational power, high-resolution 
modeling can bypass use of certain parameterizations usually 
required in process-level studies. For example, a global storm- 
resolving model (GSRM) intercomparison project, named 
DYAMOND: DYnamics of the Atmospheric general 
circulation Modeled On Non-hydrostatic Domains (Satoh  
et al. 2019, Stevens et al. 2019), was recently organized  
by major modeling centers around the world for the first 
time. These GRSMs are run with horizontal resolutions of  
2 to 5 km and vertical resolutions of 200 to 500 m and can 
directly simulate organized convection. Results from these 
simulations have shown promising improvements of diurnal 
cycle of precipitation, tropical cyclones, and organized 
convection. While the initial phase focused on simulation of 
the boreal summer, the next phase is focused on simulation 
of winter season processes.

Figure 6. A hierarchy modeling framework jointly supported by 
DOE programs.
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Observations

Detailed field observations such as DOE’s Atmospheric 
Radiation Measurement (ARM) facility are extremely 
useful for process-level studies, such as understanding key 
physical processes critical to precipitation, guiding physical 
parameterization developments, and testing assumptions 
with process models for specific cases or through statistical 
studies. For MCSs, ground- and space-based radars and field 
measurements offer detailed depictions of their characteristics. 
For example, radar observations can provide detailed vertical 
structure of convection and rainfall types (convective and 
stratiform). However, there is still no unifying theory for 
explaining many characteristics of MCSs, such as life cycle. 
Targeted field campaign observations of MCS life cycle and 
associated processes alongside model/assimilation experiments 
will be needed to better understand and simulate MCSs.

Outlook for the future

With the approaching Exascale computing era, the line between 
weather and climate modeling becomes less distinct as ESM 
resolutions become finer. The same set of fast physical processes 
operate at both weather and climate scales.

There is a need to realize the synergy between weather and 
climate, and to bridge the gap between them to address 
precipitation biases and their impact on precipitation 
predictability. There are multiple pathways forward. ML/AI 
have shown great promise in driving the improvement of 
climate modeling. To illustrate, Brenowitz and Bretherton 
(2019) developed a convection parameterization constructed 
with neural networks for coarser-grid ESMs to predict  
the column mean residual heating and moistening due  
to diabatic processes. In particular, these neural networks 
were trained with GSRM simulations, with the goal of 
making the coarse- grid ESMs evolve like “reference” 
fine-grid GSRMs. Further modeling strategies including 
hierarchical modeling approach as well as phenomena-
based model evaluation, and high-resolution modeling  
can be used to investigate precipitation biases.

It remains critically important to make connections between 
observations and models. Over the past several decades, 
modelers have made great progress with process understanding 
developed from observations. Priority should focus on process 
understanding using new observations that can be analyzed 
in innovative ways (e.g., ML/AI) to apply observations to 
guide model development and vice versa.

SESSION 3: Interdisciplinary Processes
This session discussed key processes and interactions relevant 
to precipitation that are important in the transition zones on 
either side of an interface such as ocean-atmosphere, land- 
atmosphere, and troposphere-stratosphere connections and 
interactions between aerosol-cloud-precipitation microphysical 
processes. The session had five speakers. The keynote was 
from Elizabeth J. Thompson (NOAA/PSL), and panel 
remarks from Andrew Gettelman (NCAR), Ana Barros 
(Duke University), Abigail Swann (University of 
Washington), and Yaga Richter (NCAR). 

Important processes and the associated 
interactive representation of precipitation

Aerosol-cloud-precipitation interactions: Aerosols are critical 
for the coupled hydrologic cycle and need to be better 
understood and represented in models to accurately simulate 
precipitation for the correct reasons (Benedetti et al. 2018). 
Important processes include interactions between aerosols 
and aerosol impacts on cloud microphysics including drop 
size distribution, mixed and frozen phase cloud processes, 
and aerosol-radiation interactions (Morrison et al. 2021). 
Microphysical processes affect convective clouds of all scales. 
Cloud and precipitation formation are linked to aerosol physics 
as the sites where cloud drops and ice crystals form. Aerosols 
also alter radiation, both directly (smoke, dust plumes, pollution 
like black carbon soot and sulfate), and indirectly (modifying 
clouds). These radiation effects can also affect precipitation 
by impacting thermodynamic profiles, including instability 
in the lower atmosphere and/or absorption and heating in 
aerosol layers. For aerosols and precipitation in particular, a 
multi-pronged and multi-phase approach is needed. The models 
must consistently treat these processes and work between cloud 
turbulent scales to mesoscale or synoptic scale cloud dynamics.

Multi-scale interactions: Energy and moisture cascade between 
scales from larger (500 to 2000 km) to smaller (turbulence). 
It is critical to understand the energy sources and sinks at 
different scales, and for models to capture the mesoscale, 
diurnal, and topographic feedbacks and physical processes 
responsible for connecting these scales (e.g., Eghdami et al. 
2018). These energy dissipation pathways and processes need 
to be better understood and captured in models to accurately 
predict persistence, intermittency, and instability dynamics of 
precipitation (Tao and Barros 2010). It is necessary to seamlessly 
represent and account for these processes across scales. 
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Processes at each scale have different levels of predictability, 
which need to be accounted for in forecasting S2S-to-
multidecadal precipitation patterns and their hydrologic 
risk such as flooding and drought (Kim and Barros 2001).

Stratosphere-troposphere interactions: Forecasting stratosphere- 
troposphere interactions relevant for precipitation, which include 
SSWs (Butler et al. 2017, King et al. 2019) and QBO-
MJO relationships (Kim et al. 2020), requires several model 
improvements. These include better vertical resolution in 
the stratosphere (for representing the QBO), more accurate 
simulation of deep convection (particularly its depth), improved 
gravity wave parameterizations, and more realistic simulation 
of the polar vortex and its coupling to the surface. The processes 
responsible for the observed QBO-MJO relationships are 
not yet fully understood. Model development is needed to 
harness the predictability shown in observations between 
stratosphere-troposphere interactions such as determining 
the dynamical basis for explaining SSWs and QBO-
MJO teleconnections.

Terrestrial ecosystems: The responses of plants to climate 
can have a significant impact on surface climate but these 
responses remain highly uncertain (Swann et al. 2016, 
Zarakas et al. 2020). Plants affect many aspects of surface 
climate such as relative humidity and precipitation, and the 
effects depend on location, meteorological conditions, and 

plant types. Land-surface properties can impact surface 
climate both directly (through the surface energy budget, 
primarily latent heat flux, and the impact of carbon dioxide 
on the atmosphere including radiative effects) and indirectly 
through atmospheric feedbacks (large-scale circulation responses 
to changes in horizontal gradients of moist static energy).

Ocean and the transition zone (and similar for ice): Ocean-
atmosphere processes are complex, multi scale, and are a 
combination of local and remote forcing in a coupled 
environment (Yu 2019, Fairall et al. 1996a, b, 2003,  
Edson et al. 2013). Ocean-atmospheric exchanges influence 
continental U.S. (CONUS) precipitation patterns by altering 
moisture transport (i.e., moisture sources and sinks) and the 
general atmospheric circulation (examples include but are not 
limited to Shin et al. 2006, Branstator 2014, Henderson et al. 
2017, Capotondi et al. 2020, Xiong and Ren 2021). When 
general circulation changes, it can promote or inhibit CONUS 
precipitation, tropical convection, and its teleconnections to 
CONUS. There are also Arctic pathways to the altering of 
general circulation and CONUS precipitation. Observation 
and modeling teams must work together to understand 
important factors that impact ocean-atmosphere exchanges. 
More data, more model development (dynamical and 
empirical), and more model diagnostics are needed to 
understand precipitation observations in CONUS and 
related precursor precipitation around the world (i.e., related  

Figure 7. Graphical representation of transition zones that impact precipitation predictability and bias at a variety of time and spatial scales.
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to CONUS by changing the general circulation and moisture 
transport), understand predictability sources over ocean, and 
improve or augment CONUS precipitation forecasts.

Seasonal-to-multi-decadal modes  
of variability and associated  
precipitation patterns

Models struggle with predicting variability beyond mean 
precipitation (i.e., frequency, intensity, etc. are not well 
forecasted). Models often do not accurately predict the 
mean state of precipitation or its persistence correctly, and 
this causes issues in trying to understand and predict the 
variability and regimes at smaller scales. Models struggle 
due to incomplete, insufficient, or missing physics at the 
interfaces. Important interfaces include land-vegetation-air 
interactions, air-sea fluxes, coupled boundary layers, and 
aerosol-cloud-microphysics-radiation interactions.

CMIP6 (Coupled Model Intercomparison Project Phase 6) 
models do not reproduce the observed QBO MJO relationships, 
and these models are only beginning to represent the QBO 
alone. SSWs and their coupling to the surface are well 
represented, but only in some models. The tropical mean 
state (ENSO) and its flavors from year to year or even within 
seasons are not well simulated. This affects CONUS 
precipitation predictions across all climate-to-weather scales. 
Organized strong tropical precipitation on intraseasonal (MJO) 
to synoptic and meso (hurricanes) scales can influence CONUS 
precipitation through teleconnections and global circulation—  
these scales of precipitation are still not well predicted.

Simulations of precipitation in global climate change 
scenarios require improvement, including improved 
understanding of the contributions of uncertainty and 
forcing from major transition zones and interdisciplinary 
processes such as stratosphere-troposphere, land-ocean-air-
sea-ice, and cloud-aerosol interactions. Each of these processes 
alone has a large impact on surface weather and climate, as 
well as combined. Biases in land-surface properties (either 
prescribed or varying) impact surface climate forecasts and 
produce uncertainty in forecasts.

Successful CONUS precipitation prediction hinges on 
successful predictions of SST, which are challenged by 
limitations in modeling the ocean mixed layer and air-sea 
fluxes. Ocean models and ocean reanalysis lack realistic 
mixing and turbulence, and thus the representations of 
resulting seawater properties such as temperature, salinity, 
and fluxes are also flawed.

Observational and modeling strategies

More unified model systems could be developed that can 
add appropriate complexity and consistency across scales. 
They should include more recent knowledge on wave-air-
sea-interfaces, the ocean mixed layer and ocean turbulence, 
aerosol-cloud interactions, land-surface heterogeneity, and 
stratosphere processes such as gravity wave interactions with 
deep convection. The advances made in these areas in 
research models and climate models could be introduced  
into weather models, and vice versa. This would improve 
predictions and also allow for more holistic testing and 
identification of model biases.

Model strategy and scope could be improved. For example, 
CONUS precipitation prediction requires accurate multi-
scale, multi-location air-sea, cloud-aerosol physics, land 
surface, and troposphere stratosphere interaction to be 
captured in fully coupled global models. CONUS precipitation 
relies on both remote and local forcing, at many time scales 
such as the mean state on interannual-to-seasonal scales plus 
additional small-scale variability superimposed on the mean 
state. Recent advances in model complexity and resolution 
could also take advantage of past high-resolution field 
campaign data through model-observation integration.

Increased spatial, vertical, and temporal resolution in models 
has been shown to improve certain aspects of forecast skill 
and the ability to harness known sources of predictability in 
forecasting CONUS precipitation (e.g., increased model 
resolution of known terrain features, improved spatial 
resolution of ocean and air-sea interaction). Increased 
resolution improves many aspects of coupled forecasts, while 
vertical and horizontal (i.e., 3D) improvements in model 
resolution are also needed for other applications. The effective 
resolution must also be considered (numerical model effects 
render the effective resolution of the model coarser than 
the stated grid box sizes), and relative to the resolution of 
precipitation triggers such as terrain, SST gradients, aerosol 
sinks and sources, and land sources of heat and moisture 
from plants.

Promising areas of opportunity for progress

Gaps in fundamental understanding and known sources of 
model error (described above) are important to tackle in the 
near-term. For brevity, they are not repeated here. Additional 
examples are provided in the following paragraphs.
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Unified modeling systems that span weather to climate need 
to include surface-troposphere stratosphere connections, 
and seamlessly and physically describe exchanges between 
ocean-ice-land-biology-aerosol-atmosphere components. 
As an example, NOAA is developing the next generation 
Medium-Range Weather/S2S forecast system, built on the 
community-based Unified Forecast System (UFS) with six 
fully coupled components (ocean-atmosphere-sea ice-wave-
land-aerosol). A unified multi-scale model approach has 
the potential to be more skillful and useful than separate 
scale-dependent parameterizations or tuning coefficients  
at interfaces. This unified approach would help improve 
scientific understanding and allow consistency in research 
and modeling across scales, such as the ability to test the 
same problem or parameterization across scales

More data is needed to constrain many coupled models. 
This applies to land-surface models, air-sea interaction, 
and aerosol-cloud-microphysics-radiation interactions. 
Observations of the ocean mixed layer, fluxes, SST, aerosol 
sources and sinks, cloud microphysics and growth rates, 
radiative processes, plant properties, shallow or non-
precipitating clouds, and the resulting 3D evolution of heat, 
moisture, and momentum in the atmosphere are all imperfectly 
observed and not available at most locations. These observations 
are needed to more effectively and comprehensively compare 
to models, to determine their biases and deficiencies, and to 
form new or improved parameterizations. Observations are 
needed at the air-sea interface in key climate regions known to 
impact CONUS precipitation predictions and predictability, 
such as the Maritime Continent, far western Pacific Ocean, 
coastal zones of the U.S., and the emerging Arctic. To improve 
convective parameterizations, observations that provide 
better understanding of how convection is modified by its 
environment and how convection modifies the environment  
are needed. Long-term, high-resolution satellite precipitation 
tracking methods, such as tracking of MCSs, large 
precipitation envelopes, MJOs, and atmospheric rivers  
are also needed for better understanding large-scale 
convective systems and validating model prediction.

The sinks and sources of energy and moisture (i.e., dissipation 
across scales) need to be accounted for and identified in 
observations and models. This includes the small-scale 
processes that influence the growth of larger systems and 
larger patterns, or the way in which the small-scale processes 
result from larger-scale patterns. The predictability of each 
energy source or sink needs to be identified, as well as how 
these affect the resulting predictability of surface climate and 
water extremes on longer time scales.

Better characterization of the role of land-surface properties 
and processes is needed so that representation of these processes 
can be prioritized and tackled efficiently. This includes providing 
very specific treatment of land-surface properties and processes 
in models such as soil moisture, plant type, evaporative 
resistance, albedo, aerodynamic resistance, etc.

Collaborations between modeling and observational teams 
are key. This includes building databases of events and 
their global properties/precursors to build empirical 
models, form hypotheses, and test theories. More easy-to-
access, documented, and centralized data archives could be 
formed from field campaign data so that collaborations 
between observation and modeling teams could develop 
quicker and more efficiently. Uniform formatting and 
somewhat-consistent data quality control across 
experiments would aid model-observation team efforts.

SESSION 4: Regional Precipitation
The Regional Precipitation session highlighted aspects of 
precipitation predictability and processes that are of particular 
importance at regional scales and to specific U.S. regions. 
Dave Novak, the director of NOAA’s Weather Prediction 
Center, gave a keynote presentation in the session. The 
panelists in this session, Lynn McMurdie (University of 
Washington), Marty Ralph (Center for Western Weather 
and Water Extremes), Anita Rapp (Texas A&M University), 
and Johnna Infanti (NOAA/CPC) provided their perspectives 
on various topics including observational field campaigns, 
atmospheric rivers impacting the precipitation forecasts for 
the west coast of U.S., and seasonal precipitation biases in 
the southeastern U.S.

Phenomena and processes of particular 
importance for U.S. regional precipitation 
predictability and prediction biases

The U.S. encompasses a wide variety of climates and thus 
weather; precipitation phenomena that dominate some 
regions occur rarely or never in others, some of which have 
the potential for sources of predictability. A partial list of 
precipitating phenomena with varying relevance to different 
regions includes:

• Midlatitude cyclones: Primary drivers of precipitation 
over large swaths of the CONUS, especially outside  
of the subtropics, are midlatitude cyclones and the 
associated frontal systems.
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• Mesoscale convective systems (MCS): A key phenomenon 
for U.S. precipitation, MCSs contribute substantially to 
precipitation in the Great Plains in spring and summer 
and to winter precipitation in the southeast U.S.

• Tropical cyclones: Rainfall associated with hurricanes 
and other tropical cyclonic events is a large but highly 
intermittent contributor to precipitation, especially 
extreme events.

• Atmospheric rivers: 75% of variance in storms along  
the west coast are related to atmospheric rivers.

• Lake-effect snow: A substantial factor for wintertime 
precipitation in certain U.S. regions.

• Orographic precipitation effects: Regions that include  
or are influenced by substantial topography include  
areas of enhanced average precipitation, marked by  
events that can occur whenever airflow is forced upward  
by topography, and other regions where precipitation  
on average and in individual events is suppressed by 
interactions between topography and airflow.

Corresponding to the variety of phenomena that lead to 
precipitation in different U.S. regions, the implications  
of precipitation for water resources and hazards differ 
fundamentally from one region to another. Thus, meeting the 
differing needs for precipitation prediction across the nation 
necessitates a variety of activities in the realms of both research 
and applications. At the same time, all precipitating phenomena 
occur within the context and influence of the atmospheric 
circulation and its variability, so improving understanding  
of and ability to predict the atmospheric state across spatial 
scales is essential for continued improvement of both 
prediction and predictability of U.S. precipitation at the 
regional scale. Large-scale modes of variability, including 
ENSO, MJO, Atlantic Multidecadal Variability (AMV), 
and the Pacific Decadal Oscillation (PDO), influence U.S. 
regional precipitation via teleconnections, or waves in the 
atmospheric circulation that propagate around the globe, 
which can provide sources of predictability on sub-seasonal-
to-interannual timescales. Predicting regional precipitation, 
particularly beyond the two-week timescale, requires accurately 
predicting the circulation and phenomena driving these events. 
The large-scale atmospheric circulation and its teleconnections 
to precipitation are intertwined with the biases in modeling 
precipitation across all timescales, from weather and S2S 
prediction to simulations of long-term climate.

Precipitation forecast skill over the CONUS, although slightly 
improved in the past decade, lags behind other forecast-
improvement metrics like hurricane track and intensity and 

global 500 hPa geopotential heights. There are significant 
issues with forecasting the location and magnitude of 
precipitation at regional and local scales. Factors influencing  
the poor precipitation forecast skill for weather prediction 
include underestimation of heavy rain, overestimation of 
light rain, inaccurate representation of the diurnal cycle  
of precipitation (especially with precipitation maxima too 
early in the day); weather ensemble systems also suffer from 
overconfident ensembles. Parameterized convection and 
cloud microphysics are sometimes responsible for biases  
in precipitation. Increased resolution is one factor that can 
provide a pathway to improvement for some processes, but 
it is not a panacea; for extreme precipitation globally, models 
with 25-km resolution are no better at capturing extreme 
precipitation than conventional, coarser-resolution ESMs 
(Bador et al. 2020), and improvements in present-day 
precipitation at higher resolution may not be related  
to multi-decadal changes in precipitation (Nishant and 
Sherwood 2021). Comparing different ESM runs without 
their convective parameterizations nonetheless reveals 
important differences in simulated precipitation, which 
could be due to other fundamental aspects of the models 
such as their dynamical core (Maher et al. 2018). Even the 
convective-scale, high-resolution regional models and their 
ensembles suffer from diminishing skill despite assimilation 
of radar data and explicit representation of convection. The 
displacement of MCSs and associated cold pools and placement 
of heavy rainfall degrade the deterministic and probabilistic 
forecasts for extreme weather events. Both global and regional 
weather models also suffer from lack of critical observations 
or inability to use cloud-impacted observations in the data 
assimilation systems for improved initial conditions and 
for model evaluation and process understanding that 
underlie improvements in prediction capabilities. Model 
biases in precipitation due to land and atmosphere initial 
state are shown to be a barrier to adequate precipitation 
prediction on S2S timescales and longer timescale prediction/
projections in several regions of North America (Infanti and 
Kirtman 2016).

Modeling strategies

Improving the predictions of precipitation requires using 
higher-resolution global and regional models, as well as 
improved physics and data assimilation, well calibrated 
ensembles, and sophisticated post processing techniques 
(including use of ML/AI). NOAA is currently moving 
towards development of the UFS as a community-based, 
coupled, comprehensive ESM supporting NOAA‘s 
operational weather forecasting suite and the Weather 
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Enterprise. The forecast skill priorities for UFS Medium 
Range Weather (MRW) application (Global Forecast 
System) include reduction of precipitation bias and reduction 
of the over-forecast of light precipitation and under-forecast  
of moderate-to-heavy precipitation, and improvement of 
diurnal cycle of precipitation, especially afternoon onset 
and nighttime maxima of warm-season precipitation in the 
global models. On the sub-seasonal scales (Global Ensemble 
Forecast System), improvements are sought in precipitation 
anomaly correlation coefficient in weeks two to four, as is 
reduction in systematic biases. The UFS Short Range 
Weather (SRW) application aims at developing high-
resolution Rapid Refresh Forecast System (RRFS, Figure 8)  
as an ensemble system consolidating and replacing various 
high-resolution regional models currently available  
in operations (Figure 9). Priorities for RRFS include 
improvements in treatment of sub-grid clouds, surface/
planetary boundary-layer physics, diurnal cycle, radiative 
fluxes, cold air damming, and convective initiation. In 
addition, improvement in initialization and forecasts of 
cloud/precipitation features are expected through improved 
data assimilation algorithms and better use of a variety of  
in situ and remote-sensing observations. The sub-3km 
on-demand Warn of Forecast (WoF) System currently 
under development for future use in operational forecasts  
will provide additional guidance for extreme weather events.

In addition to the current operational capabilities, there  
is also an increasing need for specialized high resolution 
regional models for forecasting precipitation along the U.S. 
west coast impacted by landfalling atmospheric rivers. This 
is envisioned through development of an Atmospheric River 
Analysis and Forecast System (AR-AFS) that can be built 
upon the research capabilities demonstrated by the West-
WRF (West Weather Research and Forecasting) developed  
at the Center for Western Weather and Water Extremes. 
This follows similar efforts currently undertaken to develop  
a Hurricane Analysis and Forecast System (HAFS) through 
transitioning the high-resolution Hurricane Weather Research 
and Forecasting (HWRF) system currently used for the 
hurricane predictions in operations.

From the opposite end, as ESMs converge toward regional-
scale simulations, one promising advance is variable-resolution 
grids (e.g., Zarzycki et al. 2015), which allow high resolution 
regionally along with the full physics and global water and 
energy budget representation that are key to prediction on 
interannual-to-multidecadal timescales.

Observations

Observations are critical to improve understanding that 
enables us to advance the representation of physical processes 
(e.g., convection, cloud microphysics, planetary boundary 
layer, and turbulence) in both weather and climate models, 
hence the need for continuous investments in observing 
systems and field campaigns. Several efforts in the past  
five and next three years have examined and will examine 
precipitation in midlatitude cyclones: OLYMPEX (Olympic 
Mountains Experiment) and IMPACTS (Investigation of 
Microphysics and Precipitation for Atlantic Coast-Threatening 
Snowstorms). The OLYMPEX field campaign (November 
2015−January 2016; Houze et al. 2017) observed interactions 

Figure 8. UFS-based Regional Rapid Refresh Forecast System (RRFS) 
to replace several mesoscale modeling systems currently in use at 
National Centers for Environmental Prediction (NCEP) operations.

Figure 9. Consolidation of global and regional modeling systems 
towards simplified production suite in NCEP operations.

GFS/GEFS + RRFS to subsume RAP/NAM/SREF/HRRR/NAMnest/HREF
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between mountains and synoptic circulation that are a common 
prediction challenge, especially in the Pacific Northwest but 
also in other regions. The ongoing IMPACTS campaign 
(NASA 2020) hopes to sample snowstorms with coordinated 
observations from the surface using two National Aeronautics 
and Space Administration (NASA) aircraft (ER2 and P3). 
Snow and ice present substantial challenges to modeling as 
well as satellite-based observations, which are often crucial 
over more northern parts of the nation and less frequent but 
can be crippling for the southern regions, as seen in Texas 
in February of 2021. The ongoing Atmospheric River 
Reconnaissance (AR Recon) field program aims at collecting 
observations in the vast data gap regions of the North Pacific 
and use them for real-time assimilation into operational 
models along with high-resolution regional models for 
improved atmospheric river and west coast precipitation 
forecasts. The upcoming TRACER (TRacking Aerosol 
Convection interactions ExpeRiment) field campaign that 
the DOE’s ARM facility will undertake starting in fall 2021 
will observe convection at high spatial and temporal resolution 
over a range of environmental and aerosol regimes across 
the full life cycle of convective events. Convection is a key 
phenomenon driving precipitation and extreme precipitation. 
As it is complex, with many important factors taking place 
at small spatial scales (from the scale of aerosol particles to 
individual clouds), accurate prediction of convection is held 
back by gaps in understanding that are best addressed by 
continued observations of convection in the atmosphere.

In addition to field campaigns, ongoing satellite (including 
Global Precipitation Measurement [GPM]; Skofronick-
Jackson et al. 2017) and comprehensive surface-based 
observing networks, both station- and radar-based, continue 
to be essential to improving precipitation prediction, including 
at regional scales. Some components of the observing network, 
like SNOTEL (Snow Telemetry; Serreze et al. 1999), are 
especially valuable in particular regions of the nation. 
Maintaining existing observations is necessary to developing 
the long-term records that can provide the foundation for 
examining variations in precipitation that occur, especially  
at timescales of decades and longer. These records are 
irreplaceable for capturing the one realization of weather and 
climate that every locale, region, the nation, and the planet 
experience. Further efforts to process these observations into 
data products are important in using observations to inform 

precipitation prediction. Observational uncertainties and 
inconsistencies among data sets can hamper calibrating both 
dynamical and statistical models for prediction.

Communications and social science

It is necessary to bridge the gap between the information 
that the weather and climate modeling communities can 
offer and the information that decision makers need in order 
to take informed action. Engaging social scientists can help 
in communicating probabilistic forecasts, including the 
possibility of low-probability but high-impact events, to the 
public and to decision makers. The needs are tremendous 
for local communities. Communicating what is possible, 
including the 10th percentile, 90th percentile, and most 
likely mode is more helpful to the user community than the 
50th percentile. Addressing all facets of forecasts for multiple 
users to enable adequate and timely response is critical. For 
prediction on timescales up to decades, decision makers 
need to know the bounds of what they should plan for—
particularly what the risks of locally new and high-impact 
events will be.

Outlook for the future and next steps

Forecast improvements are driven by what is measured.  
To improve models of precipitation specific to particular 
regions, it is critical to measure and target the precipitation 
characteristics or phenomena that are most important at the 
scales relevant to citizens and to decision makers. Extreme 
precipitation cannot be predicted without predicting the 
circulation/phenomena that drive these events. To get 
precipitation (regionally) right, circulation must also be  
right — the specific aspects depend on the region.

It is important when looking at regions to avoid a zero-sum 
mindset and take a thoughtful approach when allocating 
effort and attention to improving models for particular 
regions, so that the community does not feel that regions  
are competing against each other for resources for model 
improvement. It is critical for modeling and observational 
communities to work hand in hand to address critical gaps 
in understanding of the physical processes and provide better 
data sets for initialization and evaluation. 
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Recognizing that interests and investments in precipitation 
processes and predictability science span several agencies, 
NOAA and DOE organizers, in addition to summarizing 
their precipitation science priorities and research directions, 
invited presentations by other agencies involved in USGCRP 
and interagency programs to share their interests and identify 
activities that contribute to advancing the observations, process 
understanding, and modeling of precipitation across space and 
timescales, while emphasizing the climate and Earth system 
focus of the workshop. 

NOAA is committed to provide more accurate, reliable, and 
timely forecasts at almost every timescale spanning from the 
next hour to daily to decadal. NOAA is called upon to “collect 
and utilize information in order to make usable, reliable, and 
timely foundational forecasts of sub-seasonal and seasonal 
temperature and precipitation” by the Weather Research 
and Forecasting Act of 2017. However, today’s state-of-the-
art models exhibit systematic errors that are as large as the 
real precipitation signal NOAA is trying to model, and the 
magnitude of these errors (especially in global models) has 
remained essentially the same since the late 1990s. To reduce 
model errors and improve precipitation forecast skill, NOAA 
established the PPGC Working Group (PPGC WG) in early 
2020. The PPGC WG was charged to develop a NOAA 
strategy to accelerate improvements in global models that 
will lead to advances in precipitation prediction skill. The 
goal of PPGC is to provide more accurate, reliable, and timely 
precipitation forecasts across timescales, from mesoscale 
weather, through week three to four, S2S, to seasonal to 
decadal (S2D), through the development and application 
of NOAA’s fully coupled ESMs. The major six pushes of 
NOAA through the PPGC Initiative are to (1) improve 
end-user products through continuous user engagement 
and social science to more effectively communicate the 
forecast, (2) assimilate and integrate data, then regularly 
produce supporting data sets, including reanalyses and 
reforecasts, (3) address global model systematic errors,  
(4) establish traceability of error sources, (5) change the 
paradigm and target regions around the globe that host 
sources of prediction predictability, and (6) improve global 
water vapor and boundary-layer observations. NOAA strives 
to build strong partnerships across the community to make 
progress on this grand challenge.

DOE’s strategic plan released in 2018 has a goal to advance 
prediction of the Earth system and identify what predictability 
limits might be. DOE has a strong emphasis on predictability, 
through the continuous advancement in Earth system modeling 
and process-level research combined with observational systems 
to understand how predictability limits might play out in the 
Earth system. The modeling efforts at DOE contribute to the 
enhancement of predictive understanding by examining the 
co-evolution of the natural and human systems. The Energy 
Exascale Earth System Model (E3SM) is the flagship model 
that is being developed with the goal of overcoming the 
disruptive transition to the next era of computing. Extensive 
model analysis of regional and global ESMs and multisector 
models jointly facilitate the predictive understanding of the 
water cycle. Additionally, recognizing the importance to improve 
modeled precipitation, DOE conducted a workshop in 2019 
that focused on “Benchmarking Simulated Precipitation  
in Earth System Model” to develop quantities targets for 
demonstrating model improvements. Two main thrusts drove 
the workshop dialogue: identify a holistic set of observed 
rainfall characteristics that could be used to define metrics 
to gauge the consistency between ESMs and observations; 
assess state-of-the-science methods used to evaluate simulated 
rainfall and identify areas of research for exploratory metrics 
for improved understanding of model biases and meeting 
stakeholder needs. DOE also focuses on one of the biggest 
limits to Earth system predictability — cloud aerosol 
interactions. The role of clouds, aerosol-cloud-precipitation 
interactions, and their impacts on the Earth’s radiative 
balance are focused research areas supported at DOE 
through the Atmospheric System Research (ASR) program 
and ARM user facility. In fall 2021, DOE will conduct 
workshops on artificial intelligence for Earth system 
predictability (AI4ESP), with a goal to leverage new ML/AI 
capabilities to enhance understanding and extension of 
predictability that will optimally improve predictions.

The National Science Foundation (NSF) supports a range 
of research projects to enhance understanding of phenomena 
and processes related to precipitation. They span a host of 
spatial and temporal scales, from hurricanes, snowstorms, 
floods, and hailstorms to prolonged drought. NSF also 
sponsors measurements through targeted field programs 
that address issues such as model biases. The COVID-19 

Agency and Interagency Program Perspectives
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pandemic has currently impacted several field campaigns. In 
addition, rapid advances in new technologies in observing, 
modeling, and simulation provide unprecedented insights into 
processes and phenomena and their associated predictability. 
Through efforts such as the Community Earth System 
Modeling (CESM) Large Ensemble effort, an attempt is 
being made to help interpret the observational record and 
assess internal climate variability of the coupled Earth system.

NASA supports several space-based and sub-orbital missions 
providing measurements and supporting research to understand 
precipitation processes and phenomena (Figure 10). These 
include the GPM and CubeSat missions, measuring 
precipitation at the surface, layer-by-layer intensity, and 
drop-size distributions, illuminating differences between 
convective and stratiform systems, the diurnal cycle of 
precipitation globally, and annual snowfall contributions 

from shallow-versus-deep falling snow events. The future 
Aerosol – Clouds, Convection, and Precipitation Mission, 
preparing for launch in 2030, moves from focusing on 
targeted observables to integrating cloud, aerosol, and 
precipitation processes. The Precipitation Measurement 
Missions Science Team supports investigations using 
satellite, aircraft, and ground measurements to better 
understand and improve modeling of precipitation, the  
water cycle, climate, and weather.

The Department of Defense (DOD) interest in precipitation 
centers on impacts to aviation, ground, and sea assets and 
operations, including weapons, safety, and operational systems. 
Prediction on S2S and longer timescales focuses on drought, 
flooding, and water availability/quality, which can impact 
global stability. Numerical modeling is conducted by both 
the Air Force and Navy, with each using different platforms. 

Figure 10. Constellation of NASA planned and operating space-based systems, highlighting weather-related missions (green boxes), 
indirectly related missions (yellow boxes), and missions directly addressing aspects of precipitation (asterisks). (Figure courtesy of Gail 
Skofronick-Jackson)



NOAA-DOE PRECIPITATION PROCESSES AND PREDICTABILITY WORKSHOP

16

Neither the Air Force nor Navy run climate models, instead 
relying on data from the Intergovernmental Panel on Climate 
Change (IPCC) and National Climate Assessments to inform 
installation planning in the U.S. and overseas. Defense 
meteorological satellites include a new system under 
development (EWS-G1) to provide microwave cloud and 
weather imagery and pilot CubeSats (Global Environmental 
Monitoring System [GEMS]) providing microwave temperature 
and moisture profiles with intent to share with partnering 
agencies when operational.

OSTP announced high-level interest in Earth system 
predictability (ESP) in the 2021 federal research and 
development budget priorities, identifying ESP and Earth 
system prediction as vitally important for preparing for  
and responding to extreme natural events such as droughts, 
floods, heat waves, wildfires, and coastal inundation. The 
2022 priorities memo called for agencies to collaborate in 
the development of a national strategy for predictability and 
its practical use. A Fast Track Action Committee (FTAC) 
was established in FY2020 under the National Science and 
Technology Council to identify barriers and opportunities to 
improve Earth system prediction. The FTAC engaged senor 
agency officials and program managers from multiple agencies 
(DOE, DOD, NASA, NOAA, NSF, USDA, and USGS) to 
compile agency activities, gaps, and needs as well as solicited 
input from the science community through a National 
Academy of Sciences, Engineering, and Medicine round 
table and workshop and a request for public input. The 
resulting FTAC report on ESP Research and Development 
presents a strategic framework to connect theory, observations, 
process research, modeling and data assimilation. It also 
provides a roadmap for implementing activities to explore  
and harness the predictability of Earth’s water cycle, 
precipitation extremes, and associated biosphere and  
human interactions (NSTC 2020).

ICAMS was formed in July 2020 in response to the 2017 
Weather Act to improve interagency coordination of 
meteorological services and is co-led by OSTP and NOAA. 
ICAMS represents the first major re-structuring of the nation’s 
meteorological services administrative framework in more 
than 50 years. ICAMS aims to improve U.S. meteorological 
services via an Earth system approach, providing societal 
benefits with information spanning local weather to global 
climate. The signed charter is for 10 years.

The US CLIVAR Program, sponsored by NASA, NOAA, 
NSF, and DOE, promotes grassroots community engagement 
to scope and implement research activities to accelerate progress 
in understanding the role of the oceans in climate variability 

and change, including the phenomena and processes that drive 
precipitation variability and predictability. Through interagency 
funded workshops, working groups, and research projects,  
the program is studying air-sea interactions from the tropics  
to mid- and high latitudes; studying the use of water 
isotopes to understand changes in the water cycle; applying 
new data science tools and large initial-condition model 
ensembles to interpret the observed climate record, 
differentiate internal variability from forced climate change, 
and quantify uncertainties in past and future climate 
change; promoting best practices for linking process studies 
and model improvement; characterizing processes spanning 
oceans, atmosphere, land surface, and the cryosphere that 
drive predictability from S2S to multi-year to decadal 
timescales; and implementing new Climate Process Teams  
to develop, evaluate, and implement new convection 
parameterizations and techniques within ESMs informed  
by newly acquired observational and field campaign data.

Collaboration across individual agency program investments 
in observing, understanding, and modeling precipitation 
process and predictability can continue to be fostered  
to meet the goals of the ESP roadmap through the 
interagency groups of ICAMS, the USGCRP, and the  
US CLIVAR Program.
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Question 1: What are the sources of predict-
ability that have the biggest influences on 
precipitation at weather, S2S, and multi-
decadal timescales, including extremes?

The presentations and discussions during the workshop 
highlighted intra-seasonal-to-decadal variability (e.g., NAO, 
MJO, ENSO, PDO, AMV), slowly varying processes (e.g., 
SST, soil moisture, vegetation, and sea-ice), and phenomena 
such as tropical cyclones, atmospheric rivers, extratropical 
cyclones, and MCSs as important sources of predictability 
that influence precipitation on multiple time scales. Many 
of these sources are related to complex phenomena that are 
multi-scale in nature or that involve interactions among the 
components of the climate system. Predictability depends 
on weather and climate regimes in complex ways. Significant 
challenges remain in exploiting predictability in terms of 
understanding how, where, and when this low-frequency 
variability affects regional precipitation. Predicting regional 
precipitation requires accurately predicting the large-scale 
circulation that drives regional precipitation variability, 
better representation of slowly varying processes and their 
associated influence, and better capturing localized physical 
processes associated with weather phenomena.

Question 2: What are the key physical  
processes that have the strongest imprint  
on the model biases and precipitation  
predictions and projections?

Key physical processes identified as important contributions 
to model precipitation biases include surface-atmosphere 
interactions over land, ocean, and sea-ice; deep convection; 
and aerosol-cloud-precipitation interactions. Models have 
difficulty capturing the persistence of soil moisture and 
vegetation feedbacks that influence fluxes of heat and 
moisture to the atmosphere that are recognized as potential 
sources of predictability. Ocean-atmosphere processes are 
complex, multi-scale, and combine local and remote forcing  
in a coupled environment; they influence CONUS 
precipitation by altering moisture transport (i.e., moisture 
sources and sinks) and the general circulation. Many 

precipitation biases are associated with inadequate 
representation of sub-grid-scale processes, such as 
convection, turbulence, or microphysics that cannot  
be resolved directly and must be parameterized in global 
models. Model precipitation biases are also associated with 
challenges in simulating multi-scale interactions. Energy and 
moisture cascade between scales from larger (2000-500 km) 
to smaller (turbulence). Precipitating cloud systems are 
influenced by processes across a range of scales including 
aerosol-cloud interactions at micron scales, impacts of local 
or mesoscale topography, and mesoscale or synoptic-scale 
dynamics. Models often do not capture the persistence  
of regimes or transitions between them correctly; thus, 
improving simulation of multi-scale processes that can 
influence regime transitions, such as interactions between 
eddies and mean flow, remains a challenge.

Question 3: How can we most effectively 
take advantage of existing observations 
and data (satellite and in situ) to advance 
process-level understanding of the key  
processes and predictability?

The workshop highlighted that enhanced integration 
between observations and modeling will more effectively  
use existing observations and data to advance process-level 
understanding of the key physical processes and predictability. 
The following tools were identified to enable progress in 
this area:

• Using a hierarchical modeling strategy, in which process-
level models that are more closely tied to observational 
scales provide insight to fully coupled global models, that 
can help integrate observations and models at different 
scales. Intensive long-term observations such as DOE’s 
ARM facility data are extremely useful to guide physical 
parameterization developments and to test assumptions 
with process-level models.

• Conducting phenomena-based model evaluation with 
realistically initialized hindcasts is another strategy to 
connect observations with models.

Key Findings: Response to Thematic Questions 
This section synthesizes the key findings from the keynote presentations, panel remarks, and discussions during  
the workshop in the context of the workshop’s five thematic questions.
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• Improved nonlinear and multi-scale data assimilation 
methodologies and better use of a variety of in situ and 
remote-sensing observations can improve initialization  
and representation of important features of cloud/
precipitation systems.

• Machine learning provides innovative ways of observational 
analysis in support of process understanding, analysis and 
correction of model biases, accelerating computational 
efficiency, and development of surrogate models for 
process and predictability studies.

• More easy-to-access, centralized data archives from field 
campaigns as well as routine observations that contain 
well-documented data with more uniform formatting 
and consistent data quality will enable quicker and  
more efficient collaborations between observation and 
modeling teams. Examples of efforts like obs4MIPs 
(Ferraro et al. 2015) can facilitate modeling progress by 
making observational data more accessible to modelers.

Question 4: What are the gaps and needs for 
targeted observations and process studies  
to improve understanding and model  
representations of those key processes?

The gaps and needs for targeted observations and process 
studies to advance process understanding and modeling  
are summarized in the following areas:

Targeted and enhanced in situ and satellite observations: 
To optimize observations and data sets for prediction 
initialization, evaluation, and process understanding.  
This includes enhancement of existing observation 
networks, applications of new observing technologies  
to fill in observation gaps in key regions, targeted 
observations focusing on specific high-impact events,  
and integrated data sets for process understanding and 
process-level model diagnosis.

Some specific gaps identified include: 

• Observations to constrain coupled model representation 
of the land-atmosphere interaction, air-sea interaction, 
boundary-layer dynamics, ocean mixing, and aerosol-
cloud-microphysics-radiation interactions.

• Observations to improve convective parameterizations 
through better understanding of how convection is 
modified by its environment and how convection 
modifies the environment.

• Development of long-term, high-resolution satellite 
precipitation tracking methods to understand large-scale 
convective systems, such as tracking of MCSs, large 
precipitation envelopes, MJOs, and atmospheric rivers.

Process studies that include observational field campaigns 
integrated with modeling/data assimilation

• To provide detailed depictions of the characteristics  
of MCS life cycle and associated processes leading to 
better understanding and simulations of MCSs and 
precipitation prediction in the continental U.S.

• To improve the representation of physical processes  
(e.g., convection, cloud microphysics, planetary 
boundary layer, and turbulence) in ESMs.

• To reduce model biases and uncertainties that arise  
from initialization and observation errors in air-sea 
interaction, land-atmosphere interaction, 3D structure  
of moisture and precipitation, and representation of 
boundary-layer and cloud processes.

Emerging modeling strategies:

• Unified weather and climate modeling: Due to limitations 
in computer power, weather and climate models have 
necessarily focused on representation of the processes that 
are most important to predictions at the time scales of 
interest to each community. As computing power increases, 
the line between weather and climate modeling becomes 
less distinct as each discipline can expand the set of processes 
and time scales that they resolve. A more unified approach 
that includes testing of model parameterizations at both 
weather and climate scales, and coordination around 
challenges common to both disciplines such as numerics 
and modeling infrastructure, can potentially lead to 
reductions in systematic biases and improved sub 
seasonal to decadal predictions.

• Community modeling infrastructure: Development of 
community modeling infrastructure, such as the UFS 
and CESM, can facilitate sustained integrated community 
efforts in ESM, accelerate the transition from research to 
operations, and yield results in which the whole is greater 
than the sum of the parts. While of critical importance, 
accelerating the transition of research to operations, 
however, requires significant resource investment, and 
commitment and flexibility in both the research and 
operations communities.
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• High-resolution modeling: With increasing computational 
power, high-resolution modeling is becoming a desirable 
approach to conduct process-level studies to understand 
key areas such as complex terrain and to forecast regional 
phenomena impacting precipitation, such as atmospheric 
rivers and hurricanes, while bypassing the usage of certain 
parameterizations. In addition, coupling with a high-
resolution ocean model is needed in order to simulate 
the impacts of mesoscale ocean eddies, western boundary 
currents, and SST fronts on weather and climate.

• ML/AI: Machine learning and artificial intelligence tools 
and techniques can be used in many ways to enhance a 
predictive understanding of precipitation. ML/AI can  
be used to simplify parameterizations of subgrid-scale 
variability, thereby accelerating computations; develop 
new data assimilation methodologies; develop more 
efficient post-processing capabilities; and create new 
stochastic parameterization for surrogate models.

• Understanding multi-scale processes: Precipitation  
is a complex manifestation of many processes and 
phenomena that unfold across microphysical, local, 
regional, and global scales. To sustain continued progress  
in precipitation predictability, it is essential to continue 
grounding technological advances with work to advance 
understanding of the many interactions that lead to and 
influence precipitation and the ability to predict it.

Question 5: How do we benefit from national 
and international collaboration to make 
significant progress?

Coordinated focus by the national and international 
community can lead to significant progress in improving 
predictive skill of important processes related to precipitation 
predictability in weather and climate models. For example,  
a strong focus on observational and modeling studies of the 
MJO through several U.S. and international working groups 
over the past 20 years has improved forecast skill for the MJO.

Many U.S. agencies have common interests in precipitation 
predictability and processes research, and each agency carries 
unique capabilities and specific mission goals. USGCRP 

Interagency working groups (e.g., IGIM, USGEWEX, Obs 
IWG) provide a venue for U.S. agencies to coordinate  
their plans and investments, and at times collaborate.  
US CLIVAR is also an effective national coordination  
and planning mechanism, with a focus on research to 
understand the role of the atmosphere, oceans, and land 
systems in climate including the phenomena and processes 
that drive precipitation variability. Agencies involved in 
USGCRP and US CLIVAR have collaborated and jointly 
supported many field experiments and modeling studies.

USGCRP collaboration across individual agency program 
investments in observing, understanding, and modeling  
of precipitation processes and predictability can also  
benefit from the recent OSTP/FTAC planning process  
on Earth system predictability, and the emerging  
ICAMS coordination of meteorological services in  
the U.S., spanning local weather to global climate.

To make significant progress in understanding precipitation 
processes and extend predictability in coupled models,  
it is also important to engage international agencies and 
programs, such as the World Weather Research Programme 
and the World Climate Research Programme (including 
CLIVAR, GEWEX).

Summary

The workshop identified many areas where future progress 
can be made to improve the predictability of precipitation 
processes in both weather and climate models. The workshop 
identified key sources of predictability and key physical 
processes that need further study through coordinated 
observation and modeling efforts; emphasized the need  
to better integrate observations and models using strategies 
such as improved data assimilation and ESM evaluation,  
use hierarchies of models to understand relevant processes 
and their manifestation as precipitation, and more unified 
modeling across weather and climate scales; identified ways 
in which new techniques such as ML/AI could be applied 
to improve precipitation predictability; and identified needs 
and mechanisms for national and international collaborations 
to make significant process.
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3D three-dimensional 

AI4ESP Artificial intelligence for Earth system 
predictability 

AMV Atlantic Multidecadal Variability

AR Recon Atmospheric River Reconnaissance

AR-AFS Atmospheric River Analysis and 
Forecast System

ARM Atmospheric Radiation Measurement

ASR Atmospheric System Research

BNL Brookhaven National Laboratory

CESM Community Earth System Model

CLIVAR Climate Variability and 
Predictability Program

CMIP6  Coupled Model Intercomparison 
Project Phase 6

CONUS continental United States

CPC Climate Prediction Center

CPO Climate Program Office

DOD US Department of Defense

DOE U.S. Department of Energy

DYAMOND DYnamics of the Atmospheric  
general circulation Modeled  
On Non-hydrostatic Domains

E3SM Energy Exascale Earth System Model

ECMWF European Centre for Medium-Range 
Weather Forecasts

EESSD Earth and Environmental Systems 
Sciences Division

ENSO El Niño-Southern Oscillation

ESMs Earth System Models

ESP Earth System Predictability

FTAC Fast Track Action Committee 

GEMS Global Environmental 
Monitoring System

GEWEX Global Energy and Water Exchanges

GFDL Geophysical Fluid Dynamics Laboratory

GPM Global Precipitation Measurement

GSRMs global storm-resolving models

HAFS Hurricane Analysis and Forecast System

hPa hectopascal

HWRF Hurricane Weather Research 
and Forecasting

ICAMS Interagency Council for Advancing 
Meteorological Services

IGIM Interagency Group on 
Integrative Modeling

IMPACTS Investigation of Microphysics and 
Precipitation for Atlantic Coast-
Threatening Snowstorms

IPCC Intergovernmental Panel on 
Climate Change

IRI International Research Institute for 
Climate and Society

km kilometer(s)

LBL Lawrence Berkeley National Laboratory

LES Large Eddy Simulation

LLNL Lawrence Livermore National Laboratory

m meter(s)

MCS mesoscale convective system

MJO Madden-Julian Oscillation
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ML/AI machine learning and 
artificial intelligence

MRW Medium Range Weather

NAO North Atlantic Oscillation

NASA National Aeronautics and 
Space Administration

NCAR National Center for 
Atmospheric Research

NCEP National Centers for 
Environmental Prediction

NOAA National Oceanic and 
Atmospheric Administration

NSF National Science Foundation

NSTC National Science and 
Technology Council

NWS National Weather Service

Obs IWG Integrated Observations Interagency 
Working Group

obs4MIPs Observations for Model 
Intercomparisons Project

OLYMPEX Olympic Mountains Experiment

OSTP Office of Science and Technology Policy

PDO/PDV Pacific Decadal Oscillation/Variability

PMEL Pacific Marine 
Environmental Laboratory

PNNL Pacific Northwest National Laboratory

PPGC Precipitation Prediction 
Grand Challenge

PPGC WG Precipitation Prediction Grand 
Challenge Working Group 

PSL Physical Sciences Laboratory

QBO Quasi-Biennial Oscillation

RRFS Rapid Refresh Forecast System

S2D seasonal to decadal

S2S sub-seasonal to seasonal

SNOTEL Snow Telemetry

SRW Short Range Weather

SST sea surface temperature

SSWs Sudden Stratospheric Warmings

TRACER TRacking Aerosol Convection 
interactions ExpeRiment

UFS Unified Forecast System

US United States

US CLIVAR U.S. Climate Variability and 
Predictability Program

USDA United States Department 
of Agriculture

USGCRP U.S. Global Change Research Program

USGEWEX US Global Energy and Water Exchanges

USGS United States Geological Survey

WCRP World Climate Research Programme

West-WRF West Weather Research 
and Forecasting

WoF Warn of Forecast

WWRP World Weather Research Programme
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Day 1 – November 30, 2020

Opening Session: Overview & Scope

Start Time (EST) Topic Speaker

10:00 AM Workshop Introduction, Slack Channel,  
and Agenda Overview

Jin Huang (NOAA/CPO), Renu Joseph 
(DOE/EESSD/EESM), Co-chairs

10:05 AM NOAA’s Precipitation Prediction Grand 
Challenge (PPGC)

Wayne Higgins (NOAA/CPO)

10:15 AM DOE’s Water Cycle Predictability and 
Precipitation Priorities 

Gerald Geernaert (DOE/EESSD)

10:25 AM Overview of Earth System Predictability  
R&D Workshop

Jim Hurrell (Colorado State University)

Session 1: Limits and Sources of Predictability Part I

10:40 AM Session Introduction Ben Kirtman (U. Miami), Magdalena 
Balmaseda (ECMWF), Samson Hagos  
(DOE/PNNL), Co-chairs

10:42 AM Keynote: Signal, Noise and Predictability  
in North Atlantic Regime Systems

Kristian Strommen (Oxford) and Tim Palmer 
(Oxford)

11:07 AM Introduction of Panel Co-chairs

11:10 AM Mechanisms of S2S Precipitation Predictability Andrew Robertson (IRI, Columbia University)

11:15 AM S2S Prediction of Precipitation Frederic Vitart (ECMWF)

11:20 AM Observing Air-Sea Interactions Strategy (OASIS) 
for 2030 

Meghan Cronin (NOAA/PMEL)

11:25 AM MJO-ENSO Teleconnection Interference and 
Impacts on Blocking 

Stephanie Henderson (Univ. of Wisconsin)

11:30 AM Open Discussion: Speaker & Panel (Part 1 of 2)

LUNCH – Slide Reel: Current Capabilities and Systems Relevant to Precipitation Processes and Predictability

Session 1: Limits and Sources of Predictability Part II

1:00 PM Session Introduction Co-chairs

1:05 PM Keynote: Sub-seasonal and Seasonal 
Precipitation: from Predictability to Prediction 

Kathy Pegion (GMU)

1:35 PM Introduction of Panel Co-chairs

1:40 PM Thoughts on Exciting Directions to Explore 
Towards Improving Prediction Skill of 
Precipitation 

Aneesh Subramanian (Univ. of CO)

1:45 PM Panelist Remarks Ruby Leung (PNNL)

1:50 PM Limits and Sources of Predictability – Seasonal 
to Multidecadal Scale 

Tom Delworth (NOAA/GFDL)

1:55 PM Panelist Remarks Russ Schumacher (CSU)

2:00 PM Open Discussion: Speaker & Panel (Part 2 of 2)

Appendix B – Workshop Agenda
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Day 2 – December 1, 2020
Session 2: Key Processes Critical to Precipitation Biases

Start Time (EST) Topic Speaker

10:00 AM Session Introduction Hsi-Yen Ma (DOE/LLNL), Yi Ming (NOAA/
GFDL), Co-chairs

10:05 AM Keynote: Are Global Storm-Resolving Models a 
Path to Reduce Precipitation Biases in Climate 
Projections? 

Chris Bretherton (UW)

10:35 AM Introduction of Panel Co-chairs

10:40 AM Identifying and Improving Key Physical 
Processes Critical to Precipitation Biases – 
Hierarchy Modeling and Field Observations 

Shaocheng Xie (DOE/LLNL)

10:45 AM A Model Study of Precipitation and its Extremes 
Using a Weather Phenomena-Based Model 

Ming Zhao (NOAA/GFDL)

10:50 AM Insights from Spaceborne Precipitation 
Measurements on Model Representations of 
Convective Systems 

Steve Nesbitt (UIUC)

10:55 AM GPM Radar Observations and CAM5 
Depictions of Convective and Stratiform Rain 
over CONUS 

Courtney Schumacher (TAMU)

11:00 AM Open Discussion: Speaker & Panel 

LUNCH – Slide Reel: Current Capabilities and Systems Relevant to Precipitation Processes and Predictability

Session 3: Interdisciplinary Processes

Start Time (EST) Topic Speaker

1:00 PM Session Introduction Sandy Lucas (NOAA/CPO), Sally McFarlane 
(DOE/EESSD), Co-chairs

1:05 PM Keynote: Ocean-Atmosphere Interactions 
Related to Precipitation Predictability and Bias 

Elizabeth Thompson (NOAA/ESRL/PSL)

1:35 PM Introduction of Panel Co-chairs

1:40 PM How NOT to Represent Aerosol-Cloud-
Precipitation Interactions 

Andrew Gettelman (NCAR)

1:45 PM Prediction vs Predictability Ana Barros (Duke)

1:50 PM Quantifying the Role that Terrestrial Ecosystems 
Play in Earth’s Climate 

Abigail Swann (UW)

1:55 PM Stratosphere-troposphere Interactions and 
Precipitation 

Yaga Richter (NCAR)

2:00 PM Open Discussion: Speaker & Panel
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Day 3 – December 2, 2020
Session 4: Reginal Precipitation

Start Time (EST) Topic Speaker

10:00 AM Session Introduction Angie Pendergrass (NCAR), Ana Barros 
(Duke), Vijay Tallapragada (NOAA/NWS), 
Co-chairs

10:05 AM Keynote: Operational Forecasting of 
Precipitation: Regional Aspects 

Dave Novak (NCEP/WPC)

10:35 AM Introduction of Panel Co-chairs

10:40 AM Precipitation Processes in Midlatitude 
Cyclones: Results from recent Field Campaigns

Lynn McMurdie (U Washington)

10:45 AM Atmospheric Rivers and Their Impact on 
Precipitation Forecasts on the US West Coast 

Marty Ralph (CW3E/Scripps)

10:50 AM Observational Perspectives from the 
Upcoming TRACER Campaign 

Anita Rapp (TAMU)

10:55 AM Model Biases in Southeastern US Precipitation Johnna Infanti (NOAA/CPC)

11:00 AM Open Discussion: Speaker & Panel 

LUNCH – Slide Reel: Current Capabilities and Systems Relevant to Precipitation Processes and Predictability

Wrap-up Session: Agencies/Programs Inputs

Start Time (EST) Topic Speaker

1:00 PM Session Introduction Jin Huang (NOAA/CPO), Renu Joseph 
(DOE/EESSD/EESM), Co-chairs

1:05 PM NSF Overview Anjuli Bamzai (NSF)

1:15 PM Space-Based Precipitation Activities Enabled 
by NASA Headquarters 

Gail Skofronick-Jackson (NASA)

1:25 PM Agency – DOD Mike Farrar (USAF)

1:35 PM OSTP – Earth System Predictability; ICAMS Annarita Mariotti (OSTP)

1:45 PM US CLIVAR Program Perspectives Mike Patterson, Director

2:00 PM Session Summaries
 – Session 1
 – Session 2
 – Session 3
 – Session 4

Session Chairs

2:50 PM Next Steps & Report Preparation Renu Joseph (DOE/ESSMD), Jin Huang 
(NOAA/CPO), Co-chairs
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