

Sensitivity of Coastal Urban Areas to Extreme Sea-Level Events

Brent Daniel, John Wilson, David Judi

PNNL is operated by Battelle for the U.S. Department of Energy

1 mile to Seagull Street

Washington Post

Sensitivity of Impacts to Urban Morphology

Climate-Related Drivers of Flood Risk

- Shifting climate •
- Storm intensification •
- **Frequency** increase •

Relative Surge Projections

- Relative sea •
- Astronomica •
- Meteorologi •

	Inundation Area	Direct Impacts
level rise I tides cal surge	 Inundation area distributions Inundation area sensitivities 	 Population Impacts Land Use Categories Infrastructure System Assets

Potential Feedbacks

Climate Drivers of Shifting Flood Risk

Current Trends in Flooding Along Atlantic Coast

Climate-Related Drivers of Flood Risk

Weiqing Han, CU Boulder

Propagation to Extreme Sea Level Events

Climate-Related Drivers of Flood Risk

Relative Surge Projections

Projected Surge Depths for 15-Year Events

J. Rice, et al. "DeepSurge: A flexible and efficient deep neural network model for climate-scale storm surge risk assessment"

Feedback on Future Urban Morphology

Climate-Related Drivers of Flood Risk

Relative Surge Projections

Climate-Driven Shifting of Risks

Climate-Driven Storm Track

Probabilistic Distributions of Surge and Sea Level Rise

Spatial Distribution of Flood . Inundation Risk

Future Coastal Development Dynamics

Homebuyer Decision Metrics

Potential Feedbacks

Sensitivity of Impacts to Urban Morphology

Climate-Related Drivers of Flood Risk

Relative Surge Projections

Inundation Area

- Inundation area
 distributions
- Inundation area
 sensitivities

Direct Impacts

- Population Impacts
- Land Use Categories
- Infrastructure System
 Assets

This presentation...

Potential Feedbacks

Coastal Storm Surge Risk and Sensitivity Analyses

Simulating impacts of storm surge inundation on Gulf and Atlantic coasts:

- Evaluating 0.5 m to 6.0 m surge in • steps of 0.5 m to populate a library
- Area, population, and building impacts
- **DEM resolutions** of 10, 30, and 90 m
- DEMs of different provenance •

Coastal surge inundation areas of interest

Storm Surge Inundation Near Fort Lauderdale, FL

BERIAW

1-meter surge

RIAM

ESL 95th: 6.08 m (RCP8.5 2100) Includes RSLR, tides, storm surge Large-Scale Integrated Coastal Assessment Tool

6-meter surge

Pacific Northwest NATIONAL LABORATORY

Surge Depth (m)

Gulf and Atlantic Coast Risks

Population Sensitivity to Surge Depth

ESL surge required to inundate 50% of the population

13

Gulf and Atlantic Coast Risks

Population Sensitivity to Surge Depth

Change in surge of 15-year events

ESL surge required to inundate 50% of the population

J. Rice, et al. "DeepSurge: A flexible and efficient deep neural network model for climate-scale storm surge risk assessment"

Future Directions

- Further integration of surge inundation library with RAFT outputs
- Utilization of inundation library to seed CHANCE-C spatiotemporal risk pathways
- Integration with precipitation forecasts from RAFT and flood pluvial flood simulations from Torrent to characterize the risks of compound flooding events
- Expansion to include sensitivities of critical infrastructure systems to compound flooding events