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Flooding – A Grand Challenge Requires Integrated Interdisciplinary Research
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Challenges: High-resolution full physics models are computational expensive, data volume, etc.

Ways forward: New ways of downscaling: Global Earth system models -->AI/ML --> Regional coupled 

atmosphere-wave-ocean-land models --> AI/ML --> Flooding

AI/ML AI/ML

Global large-scale circulation 

features that are most relevant:

MJO, ITCZ, Jetstream, ARs, etc.

Regional, coastal high-res 

coupled atmos-wave-ocean 

model (UWIN-CM) and obs 

Coastal-urban flooding, ultra-

high-res hydro- and storm 

surge models 

Phase I
Phase II – large-scale drivers of extremes (Mosaic4E)
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Major Flooding: Aug 24-Sep 12, 2011

Three TCs:

• Hurricane Irene (2011, 08/24-29)

• Hurricane Katia (2011, 8/29-9/10)

• Tropical Storm Lee (2011, 09/2-12)

UWIN-CM –coupled atmos-wave-ocean model 
(Chen et al. 2013, Chen & Curcic 2016)

• Weather Research and Forecasting (WRF):

1.3/4/12 km horizontal resolution 45 vertical levels, 

• University of Miami Wave Model (UMWM):

4 km horizontal resolution, 36 directional bins and 37 
frequency bins from 0.0313 – 2.0 Hz

• HYbrid Coordinate Ocean Model (HYCOM):

1/25 deg (~4 km) horizontal resolution, 41 vertical 
levels; 
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UWIN-CM Simulations of Hurricane Irene

Significant Wave Height and WindSea Surface Height Anomaly
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➢ UWIN-CM simulated 

and observed wind, 

rain, water level (tides 

and flood stage data)

Irene
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Irene

Water Level

Lee

Lee
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Rain

Kerns and Chen (2023a
Natural Hazards)
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Kerns and Chen (2023a, Natural Hazards; 2023b, WAF)

Rain->ERM->Flooding

Rain + SSH -> local flooding

9/6/2024 Shuyi Chen (shuyic@uw.edu)



Machine Learning Models Output LayerInput Layer

Prediction:
• Today’s flooding

➢ NWS Flood Stage
➢ Global Database

Neural Network

Preprocess

Prediction Skill:
• Precision, Recall
• Hiedke Skill Score

+ 

Train and Predict

Metrics

(future work)

K Nearest Neighbors
(Kerns and Chen (2023, WAF)

• (Day –1) Flood Stage Data
• (Day-1) ERM

Extreme Rain Multiplier (ERM)

Precip Input from:
• Observations (Stage IV)
• Model (UWIN-CM)
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ICoM Phase I Research and Transition to Phase II

Phase I. High-resolution coupled atmosphere-wave-ocean modeling and observational 

data analysis for coastal-inland flooding from TCs

• Kerns and Chen (2022, Natural Hazards) 

• Kerns and Chen (2023, WAF)

• Mazza and Chen (2023a, JGR)

• Mazza and Chen (2023b, J. Hydrometeor.)

Phase II. Multiscale Objects-Tracking and AI Climate Modeling for Extremes (Mosaic4E)

• Extreme events often occur at the interface of multiscale phenomena over a wide 

range of spatial and time scales (minutes to decades, meters to global)

• How best define extreme rainfall and flooding risk (and other extremes)

• Using AI/ML to better understand and predict extremes – bridging/filling gaps



Yoneyama and Zhang (2020)
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Takeaway Points:

➢ High-resolution fully coupled atmosphere-wave-ocean-land model with ML can be 

used effectively for flood risk forecast

➢ Multiscale drivers are important for extreme events, not only local/regional players 

but also teleconnections of global systems from subseasonal (e.g., MJO), seasonal 

(e.g., ITCZ, monsoon), to longer time scales (e.g., ENSO, NAO, PDO)

➢ Mosaic4E will be further developed with AI/ML to provide a new capability for better 

understanding and predict extreme events (e.g., floods, heatwaves, drought, etc.)



Extra slide
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ERM (Extreme Rainfall Multiplier) - A linear multiplier of a location dependent typical heavy rainfall 

threshold (i.e. the median of the maximum daily rainfall each year.)  A "typical" heavy rain event is considered 

to be the environment that is relatively well adapted to (Bosma et al. 2020, BAMS)
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(Median Annual Daily Max)

ERM and flood potential (Bosma et al. 2020, Kerns and Chen 2022, Mazza and Chen 2023):

• ERM > 1.5: Flooding

• ERM > 3.0: Significant flooding

• ERM > 5.0: Extreme flooding, e.g. Hurricane Harvey (2017), Florence (2018)
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Marcio Jose Sanchez / Associated Press

Kyle Grillot / The Washington PostKey Players: El Nino, MJO, Jet, and Atmospheric River  1/20/24

AR

MJO

JET

El Nino

1,000 Year Flood LA County, CA (Feb 5, 2024)

Mazza, Chen, Kerns (2024)

FloodingERMRainfall Stage IV
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Deployment Schemes for ERM – Flooding ML Models
Sequentially day by day:
• Train ML model for 1 day lead time
• The output of one day is the input for the next day

Train ML model specific to the lead time
• A separate ML model trained for each lead time
• Can ingest a time series of ERM
• Potentially can predict a time series of flooding

Day 1 Day 2 Day 3

ML

Input:
ERM + 
Initial

Output:
Future
flood
 stageflood

stage

ML

Input:
ERM + 
Initial

Output:
Future
flood
 stageflood

stage

…

Day 1 Day 5

ML

Input:
ERM (5 days) + 
Initial

Output:
Future
flood
 stageflood

stage
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