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Flooding — A Grand Challenge Requires Integrated Interdisciplinary Research
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Challenges: High-resolution full physics models are computational expensive, data volume, etc.

Ways forward: New ways of downscaling: Global Earth system models -->Al/ML --> Regional coupled
atmosphere-wave-ocean-land models --> Al/ML --> Flooding

Phase Il - large-scale drivers of extremes (Mosaic4E Phase |

features tha , high-res ydr-
surge models

nnnnnn

lllllll
------
uuuuuu
lllll

9/6/2024



Major Flooding: Aug 24-Sep 12, 2011
Three TCs:

e Hurricane Irene (2011, 08/24-29)

* Hurricane Katia (2011, 8/29-9/10)
« Tropical Storm Lee (2011, 09/2-12)

UWIN-CM —coupled atmos-wave-ocean model
(Chen et al. 2013, Chen & Curcic 2016)

Weather Research and Forecasting (WRF):
1.3/4/12 km horizontal resolution 45 vertical levels,
University of Miami Wave Model (UMWM):

4 km horizontal resolution, 36 directional bins and 37
frequency bins from 0.0313 — 2.0 Hz

HYbrid Coordinate Ocean Model (HYCOM):

1/25 deg (~4 km) horizontal resolution, 41 vertical
levels;
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UWIN-CM Simulations of Hurricane Irene

Sea Surface Height Anomaly Significant Wave Height and Wind
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a. Brandywine Shoal Light (NOAA 8555889)

HUC 0204: Delaware River Basin
Major Rivers

Solid, colored = Obs.
Dotted, black = UWIN-CM

Color shading = Obs. HGT
above/below astronomical.
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Sfc. Winds and Max. ASSH Above Pre-Storm

Kerns and Chen (2023a
Natural Hazards)

» UWIN-CM simulated
and observed wind,
rain, water level (tides
and flood stage data)

00 7

b. 09/05 0000 Z to




Equilibrium

Mapping + ;

MACHINE °

Indirect Flood Modeling

UWIN-CM: An Atmosphere-Wave-Ocean (AWO) Coupled Model

Atmosphere (WRF, 1.3 km)

precipltation
SHF, LHF, evaporation
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[Momentum: A -> W (wave generation)

Kerns and Chen (2023a, Natural Hazards; 2023b, WAF)
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Input Layer

Extreme Rain Multiplier (ERM)

Precip Input from:
* Observations (Stage V)
* Model (UWIN-CM)
g. ERM - S4 h. ERM - UWIN-CM

0.0

 (Day-1) Flood Stage Data
 (Day-1) ERM
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Machine Learning Models
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Output Layer

Prediction:

$

* Today’s flooding
» NWS Flood Stage
» Global Database

b. Irene

B Major Flood
o Moderate Flaod
Minor Flood
a. Observed ™= Action Stage

b. K-NN Prediction Using UWIN-CM




ICoM Phase | Research and Transition to Phase |l

Phase I. High-resolution coupled atmosphere-wave-ocean modeling and observational
data analysis for coastal-inland flooding from TCs
« Kerns and Chen (2022, Natural Hazards)
« Kerns and Chen (2023, WAF)
« Mazza and Chen (2023a, JGR)
 Mazza and Chen (2023b, J. Hydrometeor.)

Phase Il. Multiscale Objects-Tracking and Al Climate Modeling for Extremes (Mosaic4E)

« Extreme events often occur at the interface of multiscale phenomena over a wide
range of spatial and time scales (minutes to decades, meters to global)

« How best define extreme rainfall and flooding risk (and other extremes)
« Using AI/ML to better understand and predict extremes — bridging/filling gaps
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MADDEN-JULIAN OSCILLATION (MJO): GLOBAL IMPACTS
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Takeaway Points:

>

>

High-resolution fully coupled atmosphere-wave-ocean-land model with ML can be
used effectively for flood risk forecast

Multiscale drivers are important for extreme events, not only local/regional players
but also teleconnections of global systems from subseasonal (e.g., MJO), seasonal
(e.g., ITCZ, monsoon), to longer time scales (e.g., ENSO, NAO, PDO)

Mosaic4E will be further developed with AI/ML to provide a new capability for better
understanding and predict extreme events (e.g., floods, heatwaves, drought, etc.)
MADDEN-JULIAN OSCILLATION (MJO): GLOBAL IMPACTS
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Extra slide
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ERM (Extreme Rainfall Multiplier) - Alinear multiplier of a location dependent typical heavy rainfall
threshold (i.e. the median of the maximum daily rainfall each year.) A "typical" heavy rain event is considered
to be the environment that is relatively well adapted to (Bosma et al. 2020, BAMS)
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ERM and flood potential (Bosma et al. 2020, Kerns and Chen 2022, Mazza and Chen 2023):
* ERM > 1.5: Flooding

« ERM > 3.0: Significant flooding

« ERM > 5.0: Extreme flooding, e.g. Hurricane Harvey (2017), Florence (2018)
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1,000 Year Flood LA County, CA (Feb 5, 2024)

Ralnfall Stage IV
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A

‘4<-v-\\

30°N

0°|

30°S

Sl ATy = > N kX
r' » » 4 - - v ‘? ’.-'V: ~ S

805 E024

180° Shuykﬁ%n\/&huylc@;@/@ew

LA G N

Flooding

Marcio Jose Sanchez / Associated Press

Mazza, Chen, Kerns (2024)



Deployment Schemes for ERM — Flooding ML Models

Sequentially day by day:
* Train ML model for 1 day lead time
* The output of one day is the input for the next day

Day 1 Day 2 Day 3

Input: Output:
ERM + Future
Initial @ flood
flood stage
stage

Output:
ERM + é Future
Initial ML flood
flood stage
stage

Train ML model specific to the lead time

* A separate ML model trained for each lead time
* Can ingest a time series of ERM

* Potentially can predict a time series of flooding

Day 1 Day 5
Input: Output:
ERM (5 days) + Future
Initial @ flood

flood stage
stage
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