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_Must-have” use case for Huge Ensembles for Extremes
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¥ Proposal: Generate statistics on simulated LLHIs that could have
z occurred under historical conditions, as well as their drivers, by
generating

'f N Hypothesis: Ergodicity of climate system means we can "trade’
»\ increasing ensemble size with increasing length of sampling time.

.

HENS: Huge Ensembles of 10N members,
where N > 4 required to converge statistics

ne ensemble will consist of short (2-week long) hindcasts.




Huge Ensembles (HENS) for Summer 2023

CO N St ' Ct| N g H E N S We ConStru Ct Summer 2023 Continues Long-Term Warming Trend
. . June, July, and August Global Temperature Anomaly (°C compared to the 1951-1980 average)
ensembles with FourCastNet using the 1osn T P y (°C comp 9

same ensembling technigues as 1.00
operational weather centers |

Validating HENS: We validate these
ensembles on extremes using the same
techniques as NWP
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LLHIs in HENS: Summer 2023 was the =ource: NASA Earth Observatory
hottest summer on record. We will study

and quantify near-miss LLHIs in ultra-large

counterfactuals of summer 2023.



FourCastNet: an Open-Source Al-Driven Digital Twin

Modulus-Makani & Earth2-MIP Repositories

Makani: Massively parallel training of machine-learning
based weather and climate models

* Scope Global

* Model Type Full-Atmosphere Al Surrogate

« Architecture  Fourier Neural Operator

* Resolution 25km, 6-hourly

- State Variables Temperature, wind, pressure, humidity
* Training Data ERAS5 Reanalysis

nnnnnnn

* Inference Time 3 sec (2-week forecast)
A=~ « Calibration |IC + Bayesian model uncertainty
» Speedup /INWP O(10,000 — 100,000)

* Power Savings O(10,000)

* Max Rollout Years

corin

* Project Type  Open-source

The internal scoring dashboard. Shows skill relative to Pangu
(green = good). . .
Public version features a reduced set of models. Multiple models, multiple sources

https://github.com/NVIDIA/earthZ2mip



Constructing Huge Ensembles with FourCastNet

1. Perturb the initial conditions with
bred vectors, computed for each

[ 2. Perturb the model
checkpoint
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Parameters and Contents of HENS

The parameters of HENS are:

Number of models Number of initial conditions

29 256
HENS consists of 29*256=7424 15-day hindcasts started from each summer day:.

7424
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HENS captures extremes outside range of IFS ensemble

For the ensembles initialized throughout summer, at a 10 day lead time (240-258 hours),
the HENS ensemble range includes extremes missed by the IFS ensemble range.

* For these IFS misses, the maximum HENS member is greater than ERAD.
* Most of the distribution is above the 1:1 line. (right)
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What are the current and unique strengths and foundational capabilities of DOE for this topic?

Enabling Technology: DOE’'s GPU Exascale Systems
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What are the grand challenges in advancing the research on this topic?

Filling the gap between weather (short-term) and
climate (long-term).

The S2S Prediction Gap

WEATHER EVENTS SEASONAL OUTLOOKS
Individual storm events: = i g a E 10-50 ern Oscillatio
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Adapted from: iri.columbia.edu/news/qga-subs



What are the gaps in research / infrastructure / coordination that prevent advances?

GPU-enabled emulator speed stresses storage rates

Perlmutter Supercomputer Perimutter All-Flash Scratch Project Disk
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t2d 2-meter surface dewpoint temperature

t850 Air temperature at 850 hPa
41010 Geopotential height at 850 hPa



What opportunities exist to overcome each of those gaps?

Switch to exchanging regeneration methods, not data?

Al nimbly generates details between "checkpoints" saved only infrequently from physics-based climate simulations

-- Bjorn Stevens, GTC 2021

’3/



What role could other agencies play in facilitating our science?

Out of 15 agencies In USGCRP, NSF Is a prime target.

U.S. Global Change
Research Program
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Department of Environmental
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What are reasonable 2-5 year, 5-10 year, and long-term goals for addressing these grand challenges?

Some suggestions for goals

ML for analysis Ocean dynamics Cross-cutting ML
and hybrid Terrestrial challenges:
2'5 ye ar g OaIS. physics-awar // =z @ _ecosystems  generalisability,
. . . climate 4 L > | = explainability,
1. 15t hybrid ESM simulations — CMIP7 modeling %
/
‘'3

' ’" uncertainty,
- ‘ and causality

2. 1st diagnostics for emulator physics

benchmark datasets

of ML for

3. 1st formal intercomparisons of emulators W (4 T Y
& hybrld ESMS Limited upscaling from | Frontierss‘ o — dynamics

Climate
Collaboration

E: - More robust
5-10 year goals: T i gy dnae
1. Establishment of parallel PCMDI for ML/AI? N R,
2. Extension of data-driven emulators to IAMS @
3. Revisiting the Charney report in ML/AI era HOH.

Private industry Stakeholders




Conferences led by CASCADE4

Machine Learning for Actionable Climate Science
Exploiting Machine Learning to Enhance Earth System Modeling and Analysis

Across Scales
Gordon Research Conference

June 22 - 27, 2025 « Bryant University

Exploiting Machine Learning to Enhance Earth System Modeling
and Analysis Across Scales

This GRC conference will explore how to best push the frontiers of ML
beyond state-of-the-art approaches, especially in

1. developing hybrid Earth system models with greater fidelity,

2. providing capabilities for climate extremes through large
ensembles with emulators as well as enhancing detection and
attribution methods, and

3. advancing climate model analysis and benchmarking.

This interdisciplinary conference brings together ML and climate
scientists, as well as the private sector, to accelerate progress towards
actionable climate science.

Organizers

Veronika
Eyring
Chair

Laure Zanna

. Co-Vice Chair

-
-

William
Collins
Co-Chair

. Pierre
Gentine

. Vice Chair

Chris Lofholm

Conference Operations Associate
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BACKUP SLIDES



We validate FourCastNet using the same metrics used by

Validation of HENS using Metrics from NVWE

operational weather centers.

1.

non-extremes?

. Do forecast probabilities of extremes match their

observed occurrence?

. Does the ensemble spread match its skill?

. Does the distance between ensemble and

climatology match numerical models?

. Are the power spectra realistic?

Can the forecast distinguish between extremes and
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Model Variants are Statistically Indistinguishable

Denote the HENS output by Exchangeability ratio: day-10
' ..,29; j = 256}, where

—i
N

1,. R _
1,...29 indexes the individual model variants and ‘
1,.

| Not exchangeable |

J = .., 256 indexes the ensemble members for each variz

—i
-

. . . . ' Exchangeable |
Assume Xj; arises from a Gaussian with variant-specific mean: ' '

O
o

.X,.:f s N{m,—, T'-'.J

Assume variant-specific mean arises from a different Gaussian:

&
o

m; ~ N(M,o?)

Exchangeability ratio
-
N

Define an “exchangeability ratic” R = o /7.

The possible values of R mean:

&
N

<1 models are interchangeable
> 1 models are different tcwv t850 z500 ulOm

Variable




Information on Extremes Gained from Huge Ensembles

Define information gain for n random variables to be

Gn:_

We seek expected information gain E[G,] as a function of n.
The cumulative distribution function of Gp is

P(Gr<x) = (PUXI<x)
P(IX/| <x) = 2P(X;<x)—1=2d(x) -1

where ®(-) is the CDF of N(0,1).
Hence, for Gaussian data, the CDF of G, is

v [T

The expected gain E[G,] is

- d P G n <
EH%]::/‘.w——LE——jﬂdk
0 X

which can be solved with numerical integration.

(b) Expected information gain: day—10

| Theoretical Gaussian = dotted black |
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Theory for Large-Sample Behavior of Extreme Statistics

» Assume that HENS arises from a Normal distribution, i.e.,

X; ' N(u,o?),

» Statistical theory yields the uncertainty in the sample mean as

SD[X,] = \/n

» Similarly, the uncertainty in the sample standard deviation is:

SD[S,] — —

n—o0 \/n

» The uncertainty in the 100at" sample percentile from a
sample of size n, denoted X,(«), is

SD[X(a)] = Wf(mt)




Large-Sample Behavior of Extreme Statistics

(c) Large—sample behavior: day—10 t2m

Mean 10th percentile 0.1th percentile

-+ Analytic uncertainty

Bias

- Empirical
- Extreme value theory

Standard deviation 90th percentile

HENS uncertainty
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