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« AI/ML approaches are percolating into parameterizations
* Here, some E3SM Examples
 Theme: Off-Line Training, Emulation of Complex Codes

Outline:

1. A better treatment of rain formation

2. Learning Aerosol Optics and Aerosol Activation

3. A broader view of Al/ML challenges and opportunities
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climate use. Emulate it with a neural network.

Results:

* Bin code can improve rain formation results

* Recover speed and results with neural network emulator

 Embedded NN in the microphysics: maintains conservation with
series of checks

* Implemented first in CESM, now ported to E3SM (not in master)
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Gettelman et al 2021, JAMES Observations than Control
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TAU and updated emulator (single NN) are running interactively in E3SM.
Emulator (from CESM) looks different than bin code in E3SM it is trying to emulate
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* Opportunity: Al Can simplify the model hierarchy for domain science
 Train parameterizations off detailed models to use across scales

« Use LLMs (ChatGPT, etc.) to do code translation between languages
« Python <- C++ <= Fortran (JAX and Julia also options)

* Opportunity: Exploring ‘Foundation Modeling’ (mixed modeling) with AI/ML

* Need to partner with Industry (Google, Microsoft, NVIDIA): develop coherent relationships
« NeuralGCM type differential approaches (learning physics or components)
« Foundation emulators: GraphCast, FourCastNet, etc: learning the whole model solutions
« DOE offers expertise, computation, training data, interoperability. Industry: Al expertise, computation

« Foundation models may replace ‘core’ parts of models (dycore, thermodynamic state)
« Develop further models (aerosols, climate extremes, energy grid) from foundation models
o Will ML ‘eat the model’? (now learning the solution still relies on the IFS/Reanalysis)

p - Gap: Al and Observations: Simulators and Assimilation approaches
« Very relevant for ARM data: to better compare to models, and to help with data processing

;"’ * Challenge/Gap: Robustness, Uncertainty, Interpretability (DOE can lead)
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