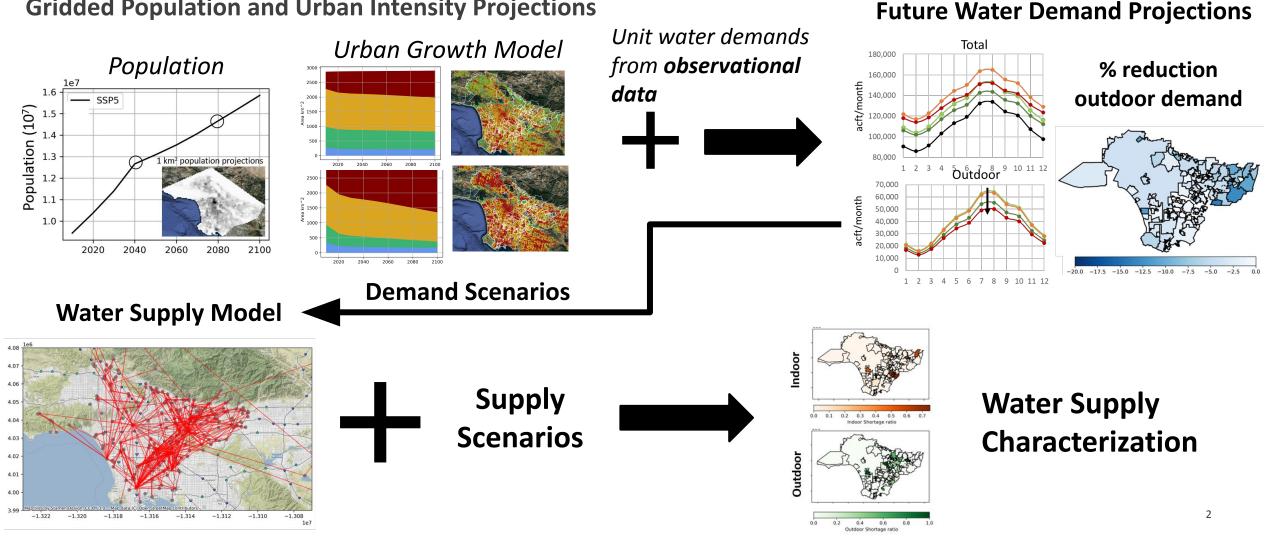


URBAN POPULATION, MORPHOLOGY, AND WATER DEMAND

Stephen Ferencz¹, Jim Yoon¹, Johanna Capone², Ryan McManamay³

¹Pacific Northwest National Labs, ²Virginia Tech, and ³Baylor University

Poster # 018 on Thursday


This research is supported by the U.S. Department of Energy, Office of Science, as part of research in MultiSector Dynamics, Earth and Environmental System Modeling Program

POPULATION, MORPHOLOGY, AND WATER DEMAND: IM₃ LA CASE STUDY

Gridded Population and Urban Intensity Projections

IM3 GENERALIZED OVERVIEW OF CO-EVOLUTION OF MORPHOLOGY AND URBAN WATER DEMAND

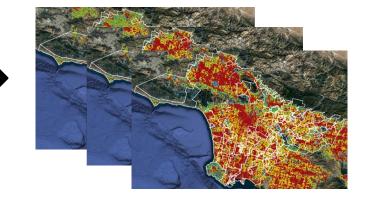
ΔTime

Population

Regulations

Water supply

Initial Conditions



Current demand

f(population, indoor efficiency, irrigated area, vegetation type, climate, laws/regulations) Factors influencing morphology

Socioeconomics

Future Potential Morphologies

Different morphology outcomes influence future outdoor demand

Research applications:

- Urban water security (requires integration with a water supply model)
- Better understanding evolution of regional multisectoral water demand
- Urban heat (tradeoffs between urban irrigation and urban heat)
- Cost-benefit analysis of difference regulatory or water supply scenarios

IM3 MODELING THE CO-EVOLUTION OF URBAN POPULATION, MORPHOLOGY, AND WATER DEMAND & SUPPLY

Challenges and Research Gaps:

Morphology

Nater supply

- 1. Urban morphology evolution under stagnating or declining population.
- 2. Urban growth/evolution projections that go beyond projecting development intensity. Expansion of current models or new downstream models.
- 3. Data for parameterizing highly resolved representations of urban water supply & demand for case studies in other regions.
- 4. Better representing the evolution of institutional and infrastructural responses to demand growth & shifting water availability.
- 5. Constraining future water availability though modeling broader regional demand growth, water supply, and climate scenarios.