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1.0 Product Definition 

Global kilometer-scale models have emerged in the last decade (Stevens et al. 2019), holding great 

promise to improve modeling of water cycle processes and extreme events that have large societal 

impacts. By explicitly resolving deep convection, which is ubiquitous over the tropics and in the 

midlatitudes during the warm season, kilometer-scale models can produce more realistic probability 

distributions of rain rates, reducing the over-abundance of drizzle and the low-bias of intense rainfall in 

lower-resolution climate models (Satoh et al. 2019). Through changes in the latent heating and 

cloud-radiation effects, improving modeling of deep convection is also important for improving 

simulations of large-scale atmospheric circulations and, hence, the spatial distribution of clouds and 

precipitation (Zhou et al. 2022). Collectively, improvements in modeling the rain rate distributions and 

atmospheric circulations are expected to have notable impacts on how well the Earth’s water cycle is 

simulated through more realistic representations of the energy balance at the top of the atmosphere and 

how precipitation is partitioned among evapotranspiration, runoff, and soil water storage at the land 

surface. 

Recently, the Energy Exascale Earth System Model (E3SM) project (Leung et al. 2020) has 

developed a global kilometer-scale model called Simple Cloud-Resolving E3SM Atmosphere Model 

(SCREAM) (Caldwell et al. 2021). The latest implementation, SCREAMv1 (Donahue et al. 2024), 

includes innovative algorithmic and software engineering advancements to run on Frontier, an exascale 

computer capable of performing more than one quintillion (1018) calculations per second. This has 

resulted in groundbreaking performance, achieving computational throughput exceeding one simulated 

year per day for global simulations at 3.25-km grid spacing (Taylor et al. 2023). With this computational 

performance, it is now feasible to run longer simulations beyond the 40-day boreal winter and summer 

simulations reported in the DYnamics of the Atmospheric general circulation Modeled On Non-

hydrostatic Domains (DYAMOND), the first intercomparison project of global storm-resolving models 

(Stevens et al. 2019). 

Extending the demonstration of the SCREAMv0 kilometer-scale modeling achieved through regional 

refinement summarized in the 2024 Second Quarter Performance Metric Report, this fourth quarter report 

focuses on the evaluation of the U.S. water cycle in SCREAMv1 global kilometer-scale simulations. 

While the SCREAMv0 regional refined simulations featured in the second quarter report are short 

simulations of 5-50 days produced on the National Energy Research Supercomputing Center (NERSC)’s 

Perlmutter using central processing units (CPUs), here SCREAMv1 is used to perform two 

13-month-long, kilometer-scale global simulations on the graphics processing units (GPUs) of Frontier at 

the Oak Ridge Leadership Computing Facility (OLCF) and Perlmutter at NERSC. The two simulations 

were configured identically with prescribed sea surface temperature and sea-ice extent, except nudging is 

applied to one of the simulations to constrain its atmospheric circulations by a 50-km-resolution global 

reanalysis while the other is a free-running simulation after model initialization. 

In this report, we track weather features in the 13-month-long SCREAMv1 simulations including 

atmospheric rivers (ARs), tropical cyclones (TCs), extratropical cyclones (ETCs) and mesoscale 

convective systems (MCSs) that are known to produce heavy precipitation and flooding in different 

regions of the U.S. The results for ARs, TCs, and ETCs are qualitatively compared with the performance 

of E3SMv1 at 10- km and 25-km resolutions (Harrop et al. 2023) and with similar results for E3SMv1 

https://climatemodeling.science.energy.gov/sites/default/files/2024-04/FY2024_2nd_Quarter_Metrics.pdf
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and other models reported in previous studies (e.g., Kim et al. 2022, Gore et al. 2023). Feng et al. (2023) 

tracked MCSs in the DYAMOND models, including SCREAMv0, and found that tropical MCSs are 

generally well simulated in global kilometer-scale simulations, despite noticeable differences among the 

models. Here the MCS results are also qualitatively compared with previous studies on evaluation of 

MCSs in E3SM and other models over the contiguous U.S. (CONUS). 

Comparison of the two SCREAMv1 global kilometer-scale simulations with observations shows that 

the model can produce realistic statistics and characteristics for all four types of storms. More 

specifically, the observed spatial distributions of storm frequency over CONUS and the surrounding 

oceans are generally well reproduced. By constraining the atmospheric circulations towards those 

depicted by a global reanalysis, storm frequency is generally better simulated in the nudged simulation 

compared to the free-running simulation, underscoring the importance of correctly modeling the 

large-scale circulations for skillful simulation of storm frequency. While this is true for ARs, ETCs, and 

MCSs, the nudged simulation produced TC frequency comparable to the reanalysis, but both are biased 

low compared to observations, while the free-running simulation better captured the higher TC frequency 

and intensity in observations. The latter suggests that by better resolving TC processes and their influence 

on the atmospheric environments, kilometer-scale simulations are more skillful for TC modeling than a 

global reanalysis with data assimilation, but at a coarser resolution. As for storm characteristics such as 

storm area and precipitation, both simulations are generally skillful and comparable, although some 

deficiencies have also been identified for future improvements. Through qualitative comparison with 

climate simulations at 25-50-km grid spacing reported in the literature, the SCREAMv1 global 

kilometer-scale simulations clearly demonstrate superior skill in modeling the four types of storms (ARs, 

ETCs, TCs, and MCSs) that are the main causes of extreme precipitation and flooding. 

2.0 Product Documentation 

This report documents our effort to evaluate the U.S. water cycle simulated by SCREAMv1 

configured at 3.25-km grid spacing globally, with 128 vertical levels and a model top at 40 km. 

Simulations were performed with a model top-level timestep of 100s and a dynamic time step of 8.33s. 

Descriptions of the model processes, model coupling, and computational strategies are provided by 

Donahue et al. (2024). Two 13-month-long simulations have been performed on the Frontier and 

Perlmutter GPUs. The simulations cover August 1, 2019 to September 1, 2020, with the simulation period 

chosen for its neutral phase in the El Niño-Southern Oscillation (ENSO), a dominant interannual mode of 

climate variability that has important impacts on the U.S. water cycle. These simulations were initialized 

using the atmospheric conditions from the European Center for Medium-Range Forecast Reanalysis 

version 5 (ERA5) at 25-km grid spacing (Hersbach et al. 2020), with sea surface temperature (SST) and 

sea-ice extent prescribed as the lower boundary conditions from the UK Met Office Operational Sea 

Surface Temperature and Sea Ice Analysis (OSTIA) at 0.1ox0.1o and daily resolution. Other than 

constrained by the observed SST and sea-ice extent, the control simulation is a free-running simulation 

with interactive land and sea-ice thermodynamics after the model initialization. 

Noting that model biases in simulating water cycle processes such as storms and precipitation may 

result from model biases in simulating the large-scale atmospheric circulations as well as model biases in 

simulating local processes such as turbulence, clouds, and land-atmosphere interactions (Feng et al. 2022, 

Harrop et al. 2023), the control simulation is compared with another simulation in which model biases in 

the large-scale atmospheric circulations are suppressed. The latter is achieved by configuring a simulation 
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that is identical to the control simulation except that the winds are nudged towards those of the Modern-

Era Retrospective analysis for Research and Applications version 2 (MERRA-2) (Gelaro et al. 2017) at 

50-km resolution throughout the 13-month simulation. These simulations with and without nudging, 

referred to as “nudged” and “free-running”, respectively, are evaluated against observations and 

compared to understand the role of large-scale circulation biases in modeling storm frequency and 

characteristics. 

Storms including ARs, TCs, ETCs, and MCSs are tracked in both simulations. The TempestExtremes 

feature tracking tool (Ullrich et al. 2021) is applied to track ARs, TCs, and ETCs using model outputs 

(sea level pressure, geopotential height at 200 and 500 hPa, column integrated moisture flux, 10-m wind 

speed, and surface geopotential) on a coarsened grid (ne120) corresponding to roughly 25-km grid 

spacing. For MCSs, the PyFLEXTRKR feature tracking tool (Feng et al. 2023) is applied to model 

outputs (hourly brightness temperature and precipitation) interpolated to a 10-km latitude-longitude grid. 

Various statistics are calculated for comparison with those of the ARs, TCs, and ETCs tracked in ERA5 

and described in Harrop et al. (2023). TC statistics are further compared against those of the International 

Best Track Archive for Climate Stewardship (IBTrACS) observations (Knapp et al. 2010). For MCSs, 

statistics are compared against those derived from the 10-km, hourly combined geostationary satellite 

infrared brightness temperature (Tb) and GPM IMERG precipitation data set (Feng et al. 2021a). The 

simulations are evaluated using observations for the same overlapping period. Since each simulation 

covers only one year, we caution about the statistical robustness of the model-observation differences and 

recommend that further evaluation using decade-long simulations be performed soon. 

3.0 Results 

3.1 Tropical Cyclones, Atmospheric Rivers, and Extratropical 
Cyclones 

In this section we present an examination of the TCs, ARs, and ETCs and compare their 

representation in the free-running and nudged SCREAMv1 simulations. We begin by looking at the 

frequency of occurrence of each of these storm types in our region of interest during the simulation 

period. Here, frequency of occurrence is measured as the total number of 6-hourly time points that contain 

a storm type at a given location. Figure 1 shows these storm occurrence frequencies for each storm type 

(as different columns) and for the free-running (top row) and nudged (middle row) simulations. For 

comparison, ERA5 results for the same period are shown in the bottom row of Figure 1. There are several 

similarities between the two simulations and ERA5, but several key differences also stand out. The first is 

the significant increase in TC frequency in the free-running simulation relative to the nudged simulation 

and ERA5, particularly over the northeastern Pacific. The second is a reduced Pacific AR frequency in the 

free-running simulation, while an increase in Atlantic ARs is simultaneously observed. Finally, ETCs 

occur more frequently in ERA5 than either SCREAM simulation. In the following sub-sections, we will 

examine each storm type in greater detail to better understand these differences. 
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Figure 1. Storm frequency for the free running simulation (top row), nudged simulation (middle row) and 

ERA5 (bottom row) for TCs (left), ARs (middle), and ETCs (right). The occurrence counts are the 

number of 6-hourly time points that contain the relevant storm type at a given location. 

Tropical Cyclones 

To better understand the differences in TCs across the two simulations and reanalysis, we look at a 

distribution of the maximum 10-m wind speed along each TC track. For tracking TCs we use a minimum 

threshold of 10 m/s for winds, so we include tropical depressions, tropical storms, and tropical cyclones 

together. Figure 2 shows the distributions of TCs in each simulation (left two columns), ERA5 (third 

column), and the IBTrACS observations (fourth column) for comparison. The blue bars in each panel 

correspond to the August 2019-August 2020 period of the SCREAM simulations for a fair comparison. 

The orange, empty histogram overlaid in each panel provides the climatological IBTrACS data for 

1979-2023. 

 

Figure 2. Frequency distribution of TC 10-m wind speed (maximum value along each track measured in 

m/s) for free-running SCREAM (first column), nudged SCREAM (second column), ERA5 (third 

column), and IBTrACS (fourth column). The blue bars in each panel correspond to the August 

2019-August 2020 period. The orange, empty histogram in each panel provides the distribution for the 

IBTrACS data for 1979-2023. The TC count is provided in each panel’s title. 

The first takeaway from Figure 2 is that the larger number of TCs in the free-running SCREAM 

shown in Figure 1 (nearly double the count of the nudged SCREAM and ERA5) agrees better with 

observations, showing that this is not a shortcoming of the model, but an improvement. ERA5 struggles to 

generate sufficient TC counts, and nudging to its data inhibits SCREAM from generating TCs as well. 

Additionally, ERA5 struggles to produce strong storms. During the 13-month period examined here, 
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ERA5 produces no TCs with 10-m wind speeds reaching 40 m/s (approximately Category 2 wind speeds). 

Nudging the SCREAM model creates this same limitation in representing strong TCs in SCREAM. When 

SCREAM is free running, we see more storms in the 40-60-m/s max wind speed range. Compared to 

IBTrACS, the free-running SCREAM clearly performs the best, which agrees with recent findings from 

Baker et al. (2024), who showed that simulated TCs become much more realistic at a resolution of 

approximately 5 km. 

The free-running SCREAM simulation does, however, appear to produce too many strong TCs 

relative to what is observed. This over-abundance of strong TCs may be related to an environment that is 

too favorable for precipitation. Figure 3 shows the SCREAM simulations compared against NASA's 

Integrated Multi-satellite Retrievals for GPM (IMERG) product. The top row uses the full 13-month 

record of the simulations (with a matching period used for IMERG), and the middle row shows the 

August through October period of 2019 when TCs are more active. Precipitation is biased high in the 

free-running SCREAM simulation, and the bias is stronger than normal during the period when TCs are 

active. Nudging is shown to substantially reduce this bias in precipitation, suggesting that the large-scale 

circulation in the free-running SCREAM may be too favorable for convection to develop. Future work is 

needed, but we hypothesize that this environment that is too favorable for precipitation contributes to the 

over-abundance of strong TCs. Future development efforts for SCREAM should seek to reduce the 

precipitation and strong TC biases, while taking care not to degrade the TC count, which is currently well 

represented by the model. 

 

Figure 3. Precipitation in IMERG data (left), free-running SCREAM bias (middle), and nudged 

SCREAM bias (right) for the 13-month analysis period (top row), August-October 2019 (middle row), 

and November 2019-March 2020 (bottom row). All panels display precipitation with units of mm/day. 

Atmospheric Rivers 

ARs are tracked as shapes where we can quantify their area and accumulated precipitation. Figure 4 

shows the area of ARs for the free-running SCREAM, nudged SCREAM, and ERA5 (top row, left to 

right), as well as the accumulated precipitation for the same simulations and reanalysis (bottom row). 

Unlike TCs where free-running SCREAM produced more storms than ERA5, free-running SCREAM 

produces fewer ARs than ERA5. As already noted from Figure 1, the reduction in AR count is primarily 

realized over the Pacific Ocean. Despite the total AR count being lower in the free-running SCREAM, the 

model still does a reasonable job of capturing the distribution of AR areas and accumulated precipitation 

values compared to ERA5. When nudged, SCREAM also does a good job of capturing the distributions 
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of AR area and accumulated precipitation. This performance is not terribly surprising given that the 

spatial scales of ARs are well represented with both SCREAM’s and ERA5’s horizontal resolution. The 

bottom row of Figure 4 shows the precipitation biases in the two SCREAM simulations relative to 

IMERG for November 2019 through March 2020. It is worth pointing out that despite having a low bias 

in AR count, the free-running SCREAM has a smaller positive bias in orographic precipitation than the 

nudged SCREAM experiment. A single year of simulation makes it difficult to know whether the changes 

in this bias result from a model bias or simply interannual variability. Future analyses are needed to better 

understand the relationship between these large-scale weather patterns and their associated precipitation. 

 

Figure 4. Distribution of occurrence counts for AR lifetime-averaged area (top row) and 

lifetime-averaged accumulated precipitation (bottom row) for free-running SCREAM (left column), 

nudged SCREAM (middle column), and ERA5 (right column). “Accumulated precipitation” is the total 

precipitation summed spatially across all pixels tagged as part of the AR object. AR counts are provided 

in each panel’s title. Area has units of m2 and accumulated precipitation has units of m3/s. 

To better understand how ARs are represented, we examine their evolution across the simulations and 

ERA5. Figure 5 shows the life cycle of each AR, presented with normalized time units so that a time of 0 

is the AR start and time 100 is the AR end. The growth and decay of AR area is roughly symmetric when 

averaged across all ARs in ERA5, and this feature is well captured by both SCREAM experiments. 

Precipitation tends to be strongest early in the AR’s lifetime in ERA5 (roughly 10-15% of the way 

through the storm’s life) and decays gradually from there. Again, this precipitation feature is captured by 

both SCREAM experiments. 
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Figure 5. AR area (left column), accumulated precipitation (middle column), and area-average 

precipitation (right column) for free-running SCREAM (top row), nudged SCREAM (middle row), and 

ERA5 (bottom row). Each gray line corresponds to an individual AR, while the black line is the average 

of all ARs. Area has units of m2, accumulated precipitation has units of m2mm/day, and area-average 

precipitation has units of mm/day. 

Extratropical Cyclones 

Like ARs, ETCs exist on a spatial scale that is expected to be well represented by both SCREAM and 

ERA5. Figure 6 shows the 10-m maximum along track wind speeds as done for TCs. Again, like ARs, 

there are fewer ETCs in the free-running SCREAM experiment than in ERA5. It is surprising that there 

are also fewer ETCs in the nudged SCREAM experiment. It is unclear why this discrepancy exists 

between the nudged simulation and ERA5, and future work is needed to uncover its cause. The other 

feature of note when comparing SCREAM to ERA5 is the shift in the wind speed distribution toward 

stronger values in the free-running experiment. Chen et al. (2024) showed that ERA5 tends to 

underestimate strong near-surface winds relative to surface observations, so it is reasonable to expect that 

the shift in wind speeds is an improvement in their representation. Future work using observations to 

compare with the simulated winds in SCREAM can help to assess the magnitude of any biases associated 

with simulated ETCs. 

 

Figure 6. Frequency distribution of ETC 10-m wind speed (maximum value along each track measured in 

m/s) for free-running SCREAM (left column), nudged SCREAM (middle column), and ERA5 (right 

column). The blue bars in each panel correspond to the August 2019-August 2020 period. The orange, 

empty histogram in each panel provides the distribution for ERA5 data for 1979-2020. The ETC count is 

provided in each panel’s title. 
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3.2 Mesoscale Convective Systems 

Previous studies have identified significant negative biases in MCS frequency and precipitation in 

simulations at grid spacings of 25-50 km (e.g., Feng et al. 2021b, Leung et al. 2022). At 3.25-km grid 

spacing, SCREAM reproduced the observed spatial pattern of MCS frequency across the CONUS quite 

well, highlighting more frequent occurrence of MCSs east of the Rocky Mountains (Figures 7 and 8). 

However, the free-running simulation produced MCSs too frequently in the Northern Great Plains and 

southeastern U.S. during spring (Figure 7) and not enough in the Central Great Plains and the Midwest as 

well as too frequently in the northeastern U.S. during summer (Figure 8). These biases are significantly 

reduced in the nudged simulation in both seasons, suggesting a major role of large-scale circulation biases 

in limiting skillful modeling of MCS frequency in the free-running simulation. 

 

Figure 7. MCS frequency (units: %) in March-April-May (MAM) of 2020 in (a) observation, (b) nudged 

simulation, and (c) free-running simulations and the difference between the (d) nudged and (e) 

free-running simulation compared to observation. MCS frequency, also labeled as MCS cloud frequency, 

is defined by how often an MCS cloud shield mask is identified by the MCS tracking algorithm at each 

hour and each grid point. 

 

Figure 8. Same as Figure 7 but for June-July-August (JJA) of 2020. 
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Figure 9 summarizes the analysis of MCS frequency by comparing the observed and simulated 

monthly total MCS number over the Central U.S. The nudged simulation reproduced the monthly 

variations of MCS number found in observations, with a peak occurrence of 40 (42) MCSs in July and a 

total of 176 (178) MCSs between March and October in the simulation (observation). The free-running 

simulation also realistically captured the seasonal variability except for a significantly larger and smaller 

number of MCSs in May and July, respectively, compared to observation. The simulation produced a 

total of 196 MCSs, which is 10% higher than the observed MCS number. 

 

Figure 9. Number of MCS in the Central U.S. for each month between September 2019 and August 2020 

for observation (black), nudged simulation (orange), and free-running simulation (blue). 

Consistent with the biases in MCS number, the free-running simulation features an over-abundance of 

MCS precipitation in the Northern Great Plains and southeastern U.S. during spring (Figure 10), while 

MCS precipitation is too low in the Central Great Plains and the Midwest but too high in the northeastern 

U.S. during summer (Figure 11). Nudging results in a much better simulation of the spatial distribution of 

MCS precipitation. However, both simulations feature large negative biases in MCS precipitation in the 

northern Gulf of Mexico, consistent with negative biases in total precipitation there (not shown). 

 

Figure 10. Similar to Figure 7 but for MAM MCS precipitation (units: mm day-1). 
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Figure 11. Similar to Figure 10, but for JJA. 

Lastly, we evaluate how well SCREAM simulates MCS characteristics including the MCS lifetime, 

cold cloud shield (CCS) area (size of the stratiform anvil), minimum brightness temperature (an 

indication of the depth of the convective core), movement speed, precipitation feature (PF) area and rain 

rate, total rain volume, and heavy rain ratio. Figures 12 and 13 summarize the MCS characteristics using 

kernel density estimates (KDEs) constructed based on the MCSs tracked in each data set in spring and 

summer. During spring (Figure 12), both simulations generally reproduce the observed KDEs of the MCS 

lifetime, the CCS area, brightness temperature, and total rain volume. However, the MCSs in both 

simulations produce much higher PF mean rain rate and heavy rain ratio but smaller PF area compared to 

the observed MCSs. Biases in the PF area and rain rate offset each other to produce more realistic total 

rain volume. Similarity between the biases in the two simulations suggests a major contribution from 

model physics that influence the MCS precipitation characteristics. On the contrary, the nudged 

simulation shows a larger bias in MCS movement speed compared to the free-running simulation, 

suggesting modulations of the MCS movement speed by nudging the large-scale circulations. Similar 

biases of small PF area and high PF rain rate and heavy rain ratio are also found for MCSs in both 

simulations during summer (Figure 13). As in spring, the nudged simulation also continues to produce 

higher MCS movement speed than observation and the free-running simulation. The degradation of MCS 

movement speed in the nudged simulations suggest complex interactions between MCS internal dynamics 

and large-scale circulations that should be further investigated. 
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Figure 12. Spring (MAM) MCS characteristics depicted by violin plots of (a) MCS lifetime (units: hour), 

(b) cold cloud shield (CCS) area (units: km2), 9c) minimum brightness temperature (Tb) (units: K), (d) 

movement speed (unit: m s-1), (e) precipitation feature (PF) area (units: km2), (f) PF rain rate (units: 

mm h-1), (g) total rain volume (units: kg), and (h) heavy rain ratio (units: %). KDEs for observation, 

nudged simulation, and free-running simulation are shown in grey, orange, and blue, respectively. Also 

shown within each KDE are the median (white horizontal line), mean (red dot), interquartile range 

(vertical black bars), and 1.5x interquartile range (vertical black lines). 

 

Figure 13. Same as Figure 12 but for summer (JJA). 

4.0 Summary and Future Work 

This report evaluates four different types of storms in two 13-month-long SCREAM simulations 

performed on the GPUs of the Frontier exascale computer and Perlmutter. To put the above results in 

context, it is useful to qualitatively compare the km-scale model skill in simulating AR, ETC, TC, and 

MCS with previous studies documenting some aspects of the performance of E3SM or similar models at 

25-100-km resolutions. For ARs, the 2023 Q1 metric report evaluated ARs in the E3SM-HR and 

E3SM-LR simulations at 25-km and 100-km resolutions, respectively (Caldwell et al. 2019). The analysis 

noted an over-abundance of ARs in the Eastern Pacific relative to ERA5 while AR precipitation intensity 

along the U.S. west coast is significantly underestimated in both simulations except in southern 

California. Here, AR frequency in the free-running SCREAM simulation is much lower than observed in 

https://climatemodeling.science.energy.gov/sites/default/files/2023-01/FY2023_1st_Quarter_Metrics.pdf
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the Eastern Pacific, while nudging can largely reduce the bias, suggesting some challenges for the 

free-running SCREAM simulation to reproduce the observed large-scale circulation that supports the 

development of ARs. In contrast with E3SM-HR and E3SM-LR, both SCREAM simulations much more 

realistically capture the AR precipitation intensity over land, highlighting the positive impact of km-scale 

models in simulating heavy precipitation associated with orographic effects in the U.S. west coast. 

For TCs, Balaguru et al. (2020) evaluated TCs in E3SM-HR and E3SM-LR and noted the significant 

impacts of increasing resolution from 100 km to 25 km in improving modeling of TCs. Despite the 

obvious improvements, however, E3SM-HR still underestimates TC frequency and intensity in the 

Eastern Pacific. In contrast, the free-running SCREAM simulated a comparable number of TCs observed 

during the simulation period, and the simulated TC intensity also matches well with the observations. As 

noted above, nudging the simulated winds towards MERRA-2 suppresses the formation of TCs and their 

intensity, suggesting that interactions between TCs and their environments play an important role in TC 

development and intensification. 

For ETCs, Gore et al. (2023) determined the large-scale meteorological patterns of ETC in the U.S. 

from observations and evaluated how well E3SM-HR and E3SM-LR, among other models in the Coupled 

Model Intercomparison Project Phase 6 (CMIP6), captured these patterns and the associated ETC 

frequency and intensity. Overall, E3SM-HR and E3SM-LR well simulated ETC frequency and intensity, 

with < 5% bias in ETC frequency and < 7% bias in ETC intensity. Here, for a single year, SCREAM 

shows slightly degraded performance compared to E3SM-HR and E3SM-LR in terms of ETC frequency 

(11% and 8% underestimations in the free-running and nudged simulations, respectively). The 

free-running simulation has relatively more intense ETCs compared to ERA5, and this bias is reduced in 

the nudged simulation. As relatively larger-scale features, the ability of models to capture ETCs appears 

to be sensitive to how well atmospheric circulations are simulated. 

For MCSs, several studies adopted the same methodology for evaluating MCSs in climate simulations 

as described in this report. These studies consistently identified significant underestimation of MCS 

numbers in climate simulations at resolutions of 25-50 km in the central U.S. during the warm season. For 

example, simulations by the Model for Prediction Across Scales (MPAS) at both 25-km and 50-km 

resolution show a negative bias in MCS number by ~75% and MCS precipitation by ~52% 

(Feng et al. 2021b). In the 2020 Q2 metric report, MCSs simulated by E3SM at 25-km resolution were 

compared against observations over the central U.S. The simulation underestimated MCS number by 

~35% and MCS precipitation by ~60% in spring and ~90% in summer. SCREAM is performing notably 

better, with the free-running simulation overestimating MCS number by ~10% during the warm season, 

although larger biases are found in May (~100% overestimation) and July (~25% underestimation). 

Nudging largely reduced the biases in simulating both MCS number and precipitation, highlighting the 

importance for improving the large-scale circulation that provides favorable environments for the 

development of MCS in the U.S. 

Overall, analysis of four storm types that are major drivers of extreme precipitation and floods in the 

U.S. in observations and in SCREAM simulations at 3.25-km resolution provides evidence of skillful 

simulations of storm frequency and intensity. Qualitative comparison of model skill between the 

SCREAM simulations and the high-resolution simulations at 25-50-km resolution reported in previous 

studies show clear advantages of km-scale modeling for simulating storm intensity, while storm 

frequency is generally comparable or improved. Comparison of the free-running and nudged SCREAM 

simulations underscores the need for improving modeling of the large-scale circulation, which has large 

https://climatemodeling.science.energy.gov/system/files/attachments/FY2020_2nd_Quarter_Metrics.pdf
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impacts on simulating storm frequency, but does not have an obvious dependence on model resolution. 

As atmospheric circulation is highly variable across a wide range of timescales, the preliminary findings 

reported here should be further investigated using longer simulations, such as the decadal simulations 

being performed by the E3SM project using SCREAMv1. Lastly, atmospheric circulations that influence 

storms in the U.S. are sensitive to tropical heating through its impact on atmospheric overturning 

circulations and teleconnections. As tropical heating is strongly influenced by physical processes in the 

atmosphere, ultimately improving and better calibrating physics parameterizations such as cloud 

microphysics and atmospheric turbulence that are not resolved even at km scale is critical for fully 

realizing the value of km-scale models for climate predictions and projections. 
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