


Urban Breakout Report Research Gaps, Barriers, Opportunities

Jennie Rice, Stephanie Waldhoff; Steering Committee Melissa Allen-Dumas, TC Chakraborty, Andy Jones, Kevin Reed, Youtong Zheng; Topic Leads

2024 EESM PI Meeting

There are many ways to organize urban research

2024 EESM PI Meeting

Structural, Parameter, and Process Uncertainties/Biases in Urban Modeling

Research gaps:

- Urban structure, parameters, and processes simplified in models (like in E3SM and WRF)
- Not always appropriate for conducting science at decision-relevant scales
- Biases our understanding of response of human systems to climate change and extreme events (including to compound extremes)

Barriers:

- Traditional dearth of observational data in urban environments
- Poorly accounting for critical urban processes and parameters in models (urban vegetation, morphology, anthropogenic heat, & their changes)
- Lack of concentrated effort in developing urban-resolving models

Opportunities:

- Leverage recent DOE investments in urban IFLs and CRCs to gather more decision-relevant and urban microclimate data
- Take advantage of modeling and model development efforts through multiple DOE-funded projects (IM3, ICoM, HyperFACETS, Early Career Projects, etc.)

2024 EESM PI Meeting

Cross-Scale Interactions for Urban Modeling

Gaps:

- Bridging scales from large scale climate down to native resolution that gives rise to decision-relevant outcomes and variability
 - Urban influences on larger scale climates/links to regional infrastructure and vulnerabilities
 - Role of sea breeze / regional air flow dynamics in defining microclimates, especially extremes
- Capturing the right process interactions at fine-scale
 - Fine-scale coupling of natural and human processes that give rise to time and space varying dynamics
 - Indoor environments/Human mobility within urban areas/Storm infrastructure status

Barriers:

• High resolution data; disaggregation of what processes matter at what scale using model experiments.

Opportunities:

- E3SM:
 - Incorporation of structures and processes at sub-kilometer scale that can interact with local and global climate. Possible use of AI/ML surrogates here.
- Urban IFLs/ARM:
 - High resolution measurements from field campaigns can be compared to those taken at fixed tower locations.
 - The four urban areas represent different sized cities in different climatic locations.

2024 EESM PI Meeting

Research Gap

- Urban extent, morphology, infrastructure, institutions are evolving in consequential ways in tandem with population, technology, economy etc., (e.g. energy transition, adaptation)
- Need internally consistent scenarios across these drivers (e.g., urban people vs urban land)
- Need to understand range of possible futures and their implications

Barriers

- Conceptual challenges prediction vs. design
- Data challenges relationship among high-level drivers and fine-scale outcomes difficult
- Coordination challenges disciplinary stovepipes

Opportunities

- Stakeholders can inform key questions, scenarios, outcomes of interest
- Al approaches for generating fine-scale scenarios from high level drivers and constraints 2024 EESM PI Meeting August 6–9, 2024

What are the current and unique strengths and foundational capabilities of DOE for this topic?

- IM3 coupling between WRF and Energy+ enables feedbacks between buildings, energy sytems, urban microclimates and indoor environment
- Strong expertise in extremes writ large
- Remote sensing -based analysis
 - E.g. TC use of land surface temperature to characterize urban contribution at larger scale
- Urban IFLs offer rich set of observations
- ARM campaigns

What are the grand challenges in advancing the research on this topic?

- Bridging scales from large scale climate down to native resolution that gives rise to decision-relevant outcomes and variability
 - Urban influences on larger scale climates
 - Role of sea breeze / regional air flow dynamics in defining microclimates, especially extremes
 - Links to regional infrastructure and vulnerabilities (electricity system vulnerabilities to heat and energy droughts).
 - Influence of urban dynamics on larger scale sectors (commodity prices, resource demands)
 - E.g. , Mediated through competition for land
 - E.g. water demand at regional level as a function of urban morphology
- Capturing the right process interactions at fine-scale
 - Fine-scale coupling of natural and human processes that give rise to time and space varying dynamics
 - Indoor environments
 - Human mobility within urban areas
 - E.g. storm infrastrsucture status can matter more than precip characteristics for floods
- 2024 EESM PI Meeting Wildland Urban Interface / fire risk / urban growth / insurance dynamics

What are the grand challenges in advancing the research on this topic?

- Model strategy, biases, structural uncertainties
 - What are advantages or disadvantages of AI/ML vs. physic based models
 - How to characterize Structural uncertainty in physics-based models
 - E.g. anthropogenic heat in urban canopy models
 - E.g. microphysics scheme affects sign of urban impact on regional deep convection
- Decomposing influences
 - How much is a a given outcome (e.g. precipitation intensity) a function of urban characteristics vs. physical processes (e.g. urban extent / form vs. microphysical processes) vs. internal variability / noise

What are the grand challenges in advancing the research on this topic?

- Dynamic changes on decadal scenario timescales
 - Characeterizing range of urban scenarios extent, morphology, population density, energy / water infrastrutcture
 - E.g. energy transition affects AH, indoor exposures, air quality emissions
 - Adaptation scenarios
 - Downscaling of coarser scale scenarios to smaller scale
 - Stable patterns of association between scenario factors such as population, urban morphology etc.
 - Conceptual issues which scenario factors are predictions vs. choices vs. projections that follow from higher level scenario factors
 - For any given study, must sort out XLRM (
- Linking with decision-makers
 - How to identify the events / conditions that matter (beyond heat, also stable air days that have implications for air quality
 - Characterizing and communicating confidence from existing data
 - New ways of deriving insght that might not be about resolving everything

2024 EESM PI Meeting Transferability of knowledge from one geographic context to another

What are the gaps in research / infrastructure / coordination that prevent advances?

- Observations systematically disregard urban areas
- Global models rarely represent or focus on urban dynamics
- Fine scale boundary conditions are critical (land use / morphology) but hard to chartacterize
 - Large uncertainties across datasets in terms of what is characterized as "urban"
- Standardized metrics packages would be helpful for consistency across
- Computational limits
- Many EESM urban researchers have no formal or funded connection to the urban IFLs
- Consistent global and local scenarios (e.g., downscaling of SSPs to urban land use)
 - Population and urban morphology projections not necessarily consistent with one another
- Navigating programmatic constraints related to fundamental vs. applied
 2024 FESSE PLATER in the especially challenging for urban research
 August 6–9, 2024

What opportunities exist to overcome each of those gaps?

- Systematic ways of exploring model structural uncertainty
- More fine-scaled resolution of key processes, hierarchical
 - LES scale modeling
 - 3d radiative coupling among buildings, vegetation, other built structures

- Greater collaboration between EESM PIs and Urban IFLs
- Leverage in-situ observational data, e.g. from ARM
- For Co-production of Actionable Research
 - Mindset shift
 - Resources for engagement
 - Learn from existing literature on coproduction
 - Address stakeholder fatigue