Extreme Precipitation Scaling with Temperature at the Weather Timescale and Implications for Climate Prediction

Guiling Wang¹, Hongchen Qin¹, Faisal Alvee¹, Xiaoming Sun², Huancui Hu³, Ruby L. Leung³

1. University of Connecticut 2. Los Alamos National Laboratory 3. Pacific Northwest National Laboratory

2024 EESM PI Meeting, Bethesda, MD, August 6^{th} – 9th

National Energy Research Scientific Computing Center

Tennessee, August 2021 (425mm or 17inches in 24

Kentucky, July 28, 2022 (peak rain rate > 4 inches/hour)

New York City, September 2021 (tropical storm Ida) (record rain intensity at central park: 79mm (3.15 inches) per hour)

July 10-11, Northeast, 2023 (48 hr total up to 10.49 inches)

Accurate and *locally relevant* quantitative prediction/projection of extreme precipitation changes are needed to guide and support the increasingly urgent climate adaptation efforts.

BILLION-DOLLAR DISASTER NORTHEAST FLOODING

ACCUWEATHER PRELIMINARILY ESTIMATES

\$3-\$5 Billion

IN DAMAGE & ECONOMIC LOSSES FROM FLOODING SUNDAY THROUGH **TUESDAY IN THE NORTHEAST**

Extreme Precipitation on the rise: Observations & Theoretical predictions

Marvel et al. (2023, *5 th National Climate Assessment*)

Observed changes of precipitation on the heaviest 1% of days, during 1958-2021

Rudolf Clausius 1822-1888 German Mathematician / Physicist

Benoit Paul Emile Clapeyron 1799-1864 French Engineer / Physicist

Thermodynamics: rain intensity increasing with temperature exponentially, at \sim 7% K⁻¹ (C-C relationship) \Box Further modification due to changes of atmospheric dynamics, etc

Extreme Precipitation on the rise: Predictions from CMIP6 ESMs (John et al., 2022)

Projected relative changes (in % /K) of 20-year return values of Rx1day show a strong model dependence:

 $\frac{1}{\sqrt{2}}\int_{-\infty}^{\infty} \frac{1}{\sqrt{2}}\left|\frac{1}{\sqrt{2}}\right|^{2}dx = \frac{1}{\sqrt{2}}\int_{-\infty}^{\infty} \frac{1}{\sqrt{2}}\left|\frac{1}{\sqrt{2}}\right|^{2}dx = \frac{1}{\sqrt{2}}\int_{-\infty}^{\infty} \frac{1}{\sqrt{2}}\left|\frac{1}{\sqrt{2}}\right|^{2}dx = \frac{1}{\sqrt{2}}\int_{-\infty}^{\infty} \frac{1}{\sqrt{2}}\left|\frac{1}{\sqrt{2}}\right|^{2}dx = \frac{1}{\sqrt{2}}\int$

MME 10th Percentile MME 90th Percentile

Challenge: How to reduce the uncertainties of future projections?

 Improving ESM physics and dynamics (long-term effort) Constraining model-projected future changes using emergent **constraints**

At the weather timescale:

Negative scaling of Extreme Precipitation Intensity (EPI) at High Temperatures

Causes for the Negative Scaling at the Weather Timescale

•Atmospheric moisture limitation (primary cause over land,

Wang & Sun, 2022): High air temperature leads to a large saturation deficit (SD), which suppresses heavy precipitation through multiple mechanisms (e.g., raising LCL, dry air entrainment, hydrometeor re-evaporation)

•Other factors:

- *•Different precipitation types (e.g., MCS vs. non-MCS) (Hu et al., in review)*
- *• Precipitation-induced cooling (primary cause over ocean) (Sun & Wang, 2022)*
- *•Anti-cyclonic warming*

•….

EPI-T In Saturated Atmosphere (E3SM, 18 sample regions) (Extremes defined as those exceeding the 99.9th percentile of 3-hourly precipitation)

TRMM (solid lines) E3SM 0.25° (dash E3SM 1° (dotted) Would convection-permitting model make a difference? -- work in progress based on output from SCREAM (DYAMOND)

EPI-T In Saturated Atmosphere (WRF, 5 sub-regions of U.S.) (Extremes defined as those exceeding the 99.9th percentile of hourly precipitation)

Scaling ratio is similar between 12km (with cumulus parameterization) and 4km (convection permitting) simulations.

(Qin et al., Thursday Poster #072)

Questions

- 1) What may have caused the model biases in simulating the EPI-T scaling rate at the weather timescale?
	- Spatial resolution? (probably not)
	- Model physics & dynamics?
	- Background climate (e.g., wet bias/dry bias)?
- 2) Is the weather-timescale EPI-T relationship relevant for climate changes? (Can it be used as an emergent constraint for future changes)?
	- •Would regions/models with a higher scaling rate at the weather timescale experience faster extreme precipitation changes at the climate timescale?
	- •Would the weather-scale biases propagate to influence the model projected future changes?

Scaling: Climate vs. weather (based on CONUS404)

- 16 sub-regions of the U.S.
- Statistically significant (albeit weak) positive correlation between decadal-scale and weather-scale scaling rates.

(Qin et al., in prep; Thursday Poster #072)

Scaling Rates at Climate Timescale vs. Weather Timescale (based on ESMs output for Warm Season)

Y-axis: R1d_{max} changes scaled by local warming (%/K) (4XCO2 – piControl) **X-axis**: Weather-scale p99 3hrly EPI-T scaling ratio under saturation (%/K) (piControl)

Climate scale vs. weather scale

•EC-Earth •GFDL •HadGEM

Thank you!

Attending AMS Annual Meeting (New Orleans, January 12-16, 2025)?

Consider submitting an abstract to the 39th Conference on Hydrology

- Abstract due date: August 15, 2024
- Session Topical Area: "**The Earth's Water Cycle: Variability, Changes, and Extremes"**
- Invited Speakers: L. Ruby Leung (PNNL), Kristen Findell (GFDL)
- Conveners: Guiling Wang (UConn), Kyle Knipper (USDA ARS & UC Davis)