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New York City, September 2021 (tropical storm Ida)
(record rain intensity at central park: 79mm (3.15 inches) per hour)
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July 10-11, Northeast, 2023
(48 hr total up to 10.49 inches)
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* adaptation efforts.

Accu rate and locally relevant quantltatwe

' prediction/projection of extreme
precipitation changes are needed to guide
"and support the increasingly urgent climate
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Extreme Precipitation on the rise:
Observations & Theoretical predictions

Marvel et al. (2023, 5t National Climate
Assessment)

Observed changes of precipitation on the
heaviest 1% of days, during 1958-2021
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[0 Thermodynamics: rain intensity
increasing with temperature
exponentially, at ~7% K (C-C
relationship)

0 Further modification due to changes
of atmospheric dynamics, etc




Extreme Precipitation on the rise:
Predictions from CMIP6 ESMs (John et al., 2022)

Projected relative changes (in % /K) of 20-year return values of Rx1day
show a strong model dependence:
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Challenge: How to reduce the uncertalntles of future projections?
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0 Improving ESM physics and dynamics (long-term effort)
[l Constraining model-projected future changes using emergent
constraints
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At the weather timescale:
Negative scaling of Extreme Precipitation Intensity (EPI) at High Temperatures

JJA, TRMM 3-hourly,

o all time (solid) & 12-6pm only (dashed)
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(Wang et al., 2017) (Alvee et al., in prep)
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Causes for the Negative Scaling at the Weather Timescale

* Atmospheric moisture limitation (primary cause over land,

Wang & Sun, 2022): High air temperature leads to a large saturation deficit (SD),
which suppresses heavy precipitation through multiple mechanisms (e.g.,
raising LCL, dry air entrainment, hydrometeor re-evaporation)

Other factors:

* Different precipitation types (e.qg., MCS vs. non-MCS) (Hu et al., in review)

* Precipitation-induced cooling (primary cause over ocean) (Sun & Wang,
2022)

* Anti-cyclonic warming
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EPI (T, SD) relationship, based on TRMM /IMERG
precipitation

naired with T & SD from re-analvsis (Wang & Sun. 2022)
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Monotonic increase of EPI with T under fixed SD!




cFI-1 1IN Saturatea Atmospnere (csolvi, 1o sampie regions)
(Extremes defined as those exceeding the 99.9'" percentile of 3-hourly

precipitation)
NH mid-latitudes regions Other Regions (tropics, subtropics, & SH)
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TRMM (solid lines : . :
E35M 0.25° (dash: Would convection-permitting model make a difference?
E3SM 1° (dotted) -- work in progress based on output from SCREAM (DYAMOND)



EPI-T In Saturated Atmosphere (WRF, 5 sub-regions of U.S.)

(Extremes defined as those exceeding the 99.9'" percentile of hourly precipitation)
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Scaling ratio is similar between 12km (with cumulus parameterization) and

4km (convection permitting) simulations.
(Qin et al., Thursday Poster #072)



Questions

What may have caused the model biases in simulating the
EPI-T scaling rate at the weather timescale?

 Spatial resolution? ( probably not)
* Model physics & dynamics?
* Background climate (e.g., wet bias/dry bias)?

Is the weather-timescale EPI-T relationship relevant for
climate changes? (Can it be used as an emergent
constraint for future changes)?

* Would regions/models with a higher scaling rate at the weather

timescale experience faster extreme precipitation changes at the
climate timescale?

* Would the weather-scale biases propagate to influence the model
projected future changes?



Decadal-scale scaling rate
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Scaling: Climate vs. weather (based on CONUS404)

| | | |
coefficient= 1.05, intercept=-7.66

Peason's R = 0.61, p-val = 0.022

~| Spearman’s rank correlation = 0.75, p-val=0.002
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* 16 sub-regions of the U.S.

e Statistically significant (albeit weak)
positive correlation between
decadal-scale and weather-scale
scaling rates.

(Qin et al., in prep; Thursday Poster #072)



Scaling Rates at Climate Timescale vs. Weather Timescale
(based on ESMs output for Warm Season)

Y-axis: R1d__ changes scaled by local warming (%/K) (4XCO2 — piControl)
X-axis: Weather-scale p99 3hrly EPI-T scaling ratio under saturation (%/K) (piControl)

Climate scale vs. weather scale
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Thank youl!

Attending AMS Annual Meeting (New Orleans, January 12-16, 2025)?

Consider submitting an abstract to the 39% Conference on Hydrology
* Abstract due date: August 15, 2024

 Session Topical Area: “The Earth's Water Cycle: Variability, Changes, and
Extremes”

* Invited Speakers: L. Ruby Leung (PNNL), Kristen Findell (GFDL)
* Conveners: Guiling Wang (UConn), Kyle Knipper (USDA ARS & UC Davis)




